
RADC-TR-88-75
Final Technical Report
June 1988

-.

AD-A 197 858

RADC SYSTEM/SOFTWARE
REQUIREMENTS ENGINEERING
TESTBED RESEARCH & DEVELOPMENT
PROGRAM

International Software Systems, Inc. DTIC,,

AUG12 1988

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. ',

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700.

K7 i j
_-,. --

This report has been reviewed by the RADC Public Affairs Division (PA)

and is releasable to the National Technical Information Service (NTIS). At

4NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-88-75 has been reviewed and is approved for publication.

APPROVED: ~d~t.~ri(~~~

WILLIAM E. RZEPKA
Project Engineer

APPROVED:

RAYMOND P. URTZ. JR.

Technical Director

Directoiate of Command & Control

FOR THE COMMANDER:

JOHN A. RITZ
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC mnailing
list, or if the addressee is no longer employed by your organization, please
notify RADC (COEE) Griffiss AFB NY 13441-5700. This will assist us in main-

taining a current mailing list.

Do not return copies of this report unless contractual obligations or notice
• on a specific document requires that it be returned.

• °r. °°

.- .r - -

.-o..'--

. -' .'t

UNCLASSIFIED
SECUR 'v CLA5S F CA.,ONC S PAC-

REPORT DOCUMENTATION PAGE FOMBN 0704-0188

*la REPORT SECoR -Y CL.ASS; CA-ON Ib RESTRICTIVE MARKINGS

IJNCL.TAqeTrTIED N/A
2a SECURITY CLASSIFICATION AUTHOR;TY 3 .DISTRIBUTION/ AVAILABILITY OF REPORT
\/A Approved for public release; distribution

2b DECLASSIFICATION! DOWNGRADING SCHEDULE unlimited.
N /A____________________ _

4 PERFORMING ORGANiZATiON REPORT NUMBERiS 5. MONITORING ORGANIZATION REPORT NUMBEiS

*TR-FlOl-85-0l29-C RADC-TR-88-75

6a NAME OF PIERFORMNG ORGANAiO 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
International Softwarej (if applicable) RoeArDvlpntCtr
Systems, Inc. I _______Rm i eeomn etr(OE

6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)%
9420 Research Blvd, Suite 200

Austin TX 78759 Criffiss AFB NY 13441-5700

Sa NAMVE OF FUNDING 'SPONSOR %.G ISo OFF,CE SYMBOL 9 PROCUREMENT INSTROMENT IDE14TIFICATION NUMBER 4

ORGANIZATION (if applicable)
Rome Air Development Center COEE F30602-85-C-0129

Sc ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM jPROJECT ITASK jWORK UNIT

Griffiss AFB NY 13441-5700 ELEMENT NO NO NO ACCESSION NO
62702F 5581 22 17

* ~ ~ I TITLE (Include Security Cia tsficatiorn)

RADC SYSTEM/SOFTWAREi REQUIREMENTS ENGINEERING TESTBED RESEARCH & DEVELOPMENT PROGRAM~

*12 PE RSONAL AUTHOR S) F_ B.ijzer, M'. Konrad, C. Ramarnoorthy, W. Royce, W. Rzepka, S. Sherman,
L. Stucki, T. elcl., R. yeh
13a TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month Day) 15 PAGE COUNT

Interim FROM JU125 To Jul86 June 1988 230
16 SUPPLEMENTARY NOTATION

N/A
17. COSATI CODES IS1 SUBJECT TERMS (Continue on rev'erse if necessary and identify by block number)

FIELD GROUP SUB-GROJP Requirements Scenario
15 07 jRequirements Analysis Formal Specification

*12 1 05 Requirements Engineering Prototyping (See Reverse)
19 ABSTRACT (Continue on reverse if necessary and identify by block number)

-i -. This report presents the results of a panel, sponsored by the Rome Air Development Center
(RADC), tordefine a ten-year R&D program for requirements engineering.

* The -RO-~program will assist 4LD6-,in the development of a Requirements Engineering Teatbed of
tools and methodologies for def fiing the requirements of planned operational systems and for
examining research issues in requirements engineering.

The panel recommended an approach which included two R&D tracks.

The "Formal Language Track"r attempts to formally represent requirements and specifications In
the same executable language and to develop analysis tools which provide feedback on the re-
quirements and specifications. Such analysis Includes treating the specification as a
prototype and determining whether the requirements are satisfied. -_ -

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
KIUNCLASSIFIEDfUNLIMITED 0 SAME AS RPT [3 DTIC USERS IINCLASSIFIEr'4

22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
William E. Rzepk~a 1 (315) 330-2762 1 R.ADC (CEE

' DD Form 1473. JUN 86 Previous editions are obsolete. SEUIYF HSPG

4 C.X

IJ

UNCLASSIFIED

The "Evolutionary Track" is based on extending existing requirements and specification
techniques. It emphasizes prototyping with scenario generation and execution
capabilities in the near/midterm, and then selectively enhancing the associated
methods, techniques and tools over the long term.

In addition to this research approach, the Evolutionary Track attempts testbed
integration through development of a common user interface and database for tools.

. In the course of its work, the panel created a generic model of the requirements
engineering process, which proved to be of value in many requirements engineering
discussions. The panel also characterized the background and objectives of test-
bed users and analyzed the possible R&D issues in the two tracks.

18. SUBJECT TERMS (Continued).

Evaluation Testbed
Requirements Engineering Process Model

)=..,

SAcession
For

14TcIS --GPA&I
DTIC TAB 0

Unaano1nced 0~e

SIUNCLASSIFIED

'II,15-Y

0C
.Jpiy o~s

Avllbiit
Co -a1

TABLE OF COhTENTS

LIST OF FIGURES Iv

1.0 EXECUTIVE SUM.,ARY 1

1.1 GENERAL BACKGROUND AND RADC'S GOALS 1
1.2 PANEL FINDINGS AND RECOMMENDATIONS 1
1.3 OVERVIEW OF THE RESEARCH AND DEVELOPMENT PROGRAM 2

2.0 INTRODUCTION 5

2.1 AIR FORCE REQUIREMENTS PROBLEM 5
* 2.2 RADC'S SOLUTION TC THE AIR FORCE REQUIREMENTS PROBLEM - THE

REQUIREMENTs ENGINEERING TESTBED (RET) CONCEPT 6
2.3 REQUIREMENTS PANEL OBJECTIVES 9
2.4 CURRENT STATE OF THE REQUIREMENTS PROCESS 9

3.0 THE REQUIREMENTS ENGINEERING PROCESS MODEL 13

3.1 THE MODEL 13
3.2 A WALK-THROUGH 15
3.3 SCENARIOS 17

3.3.1 1990 SCENARIO 20
3.3.2 1995 SCENARIO 36

4.0 PANEL RESEARCH AND DEVELOPMENT RECOMMENDATIONS 44

4.1 NEAR-TERM INTEGRATION OF RET 44

4.2 REQUIREMENTS ENGINEERING TESTBED (RET) RESEARCH AND
* DEVELOPMENT PROGRAM 45

4.2.1 TWO-TRACK PROGRAM 45
4.2.2 EVOLUTIONARY TRACK 48

- 4.2.2.1 OBJECTIVES AND ROADMAPS 49
4.2.2.2 RESEARCH AND DEVELOPMENT ISSUES 54

4.2.3 FOIRMAL LANGLGE TRACK 61
* 4.2.3.1 OBJECTIVES AND ROADMAP 61

4.2.3.2 RESEARCH ISSUES 61
4.2.4 RESOURCE ALLOCATION 66

4.2.4.1 PRIORITIZATION IN EVOLUTIONARY TRACK 66
4.2.4.2 PRIORITIZATION IN FORWAL LANGUAGE TRACK 67

-, 4.2.4.3 ALLOCATION OF RESOURCES TO BOTH TRACKS 67

A. 5.0 CONCLUSIONS 68

6.0 EPILOGUE: RESULTS FROM A REVIEW OF THIS REPORT 70

016

" " " % .,. -. $- w ~ , "w " . w -r

APPENDIX A: CHARACTERIZATION OF TESTBED USERS A-1

APPENDIX B: DOD STANDARD 2167 AND

ThE REQUIREMENTS ENGINEERING TESTBED PROCESS MODEL B-i

APPENDIX C: PROCESS MODEL: DETAILED CHARACTERIZATION C-i

C.1 DEFINITIONS C-i
C.2 PROCESS MODEL ACTIVITIES AND SUPPORT FROM 1990/1995 TOOLS C-5
C.3 EXPRESSION OF INFORMATION IN THE 1990 RET C-11
C.4 GENERAL OBSERVATIONS C-14

APPENDIX D: REQUIREMENTS ENGINEERING TESTBED (RET) TOOLS AND

ARCHITECTURE D-1
0.1 TOOLS CURRENTLY UNDER DEVELOPMENT D-1
D.2 LOOSE COUPLING STRATEGY D-4

-. D.3 INTEGRATION STRATEGY D- 5

D.4 LONG-RANGE ARCHITECTURE D-8

APPENDIX E: DETAILED DESCRIPTIONS OF REQUIREMENTS ENGINEERING TESTBED
(RET) RESEARCH AND DEVELOPMENT ISSUES E-I

E.i EVOLUTIONARY TRACK E-2

RESEARCH ISSUES:
E.1.1 GOALS AND REQUIREMENTS SYNTHESIS E-2
E.1.2 DOMAIN MODELS AND INFORATION E-4
E.1.3 REQUIREMENTS - STATIC ANALYSIS E-10

' E.1.4 REQUIREMENTS ANALYSIS METHODOLOGY E-15
E.1.5 DYNAMIC ANALYSIS E-20
E.1.6 SOLUTION ARCHITECTURE SYNTHESIS E-28
E.I.7 SCENARIO GENERATION SUPPORT

& SCENARIO COVERAGE ANALYSIS E-30
E.1.8 VALIDATION OF PROTOTYPE AND SCENARIOS E-38
E.1.9 SCENARIOS EXECUTION AND ANALYSIS OF RESULTS E-40

,, E.I.10 ESTIMATION OF COST, RISK, TIME
IN SYSTEM DEVELOPMENT;
PERFORMANCE & EXECUTION COSTS ANALYSIS E-46

E.1.11 REQUIREMENTS EVALUATION E-53
E.1.12 TESTBED EFFECTIVENESS E-62

DEVELOPMENT ISSUES:
E.1.13 USER INTERFACE E-67
E.1.14 DATABASE E-73
E.1.15 EVOLUTIONARY TESTBED INTEGRATION E-80

%
p -

'M

i -. g' .

P - "A".%,* p"'1 / /,'3 1' " -SI'- ., . , ' J',, .f .

E.2 FORMAL LANGUAGE TRACK E-85

E.2.1 REQUIREMENTS INTEGRATED INTO SPEC LANGUAGE E-88
E.2.2 FOR IAL INTERPRETATION OF REQUIREMENTS

AGAINST BEHAVIOR E-89
E.2.3 METHODOLOGY FOR FORMAL REQUIREMENTS SYNTHESIS E-90

E.2.4 GOAL COVERAGE ANALYSIS E-91
E.2.5 MULTIPLE LEVELS OF ABSTRACTION E-92
E.2.6 SCENARIO GENERATION AND COVERAGE E-94
E.2.7 INCREMENTAL REQUIREMENTS LANGUAGE E-96
E.2.8 MANAGING RESOURCES E-98

APPENDIX F: PHILOSOPHICAL CONSIDERATIONS F-1

F.1 ASSESSING COMPLETENESS IN REQUIREMENTS F-i

F.2 UNEXPECTED BOUNDING OF THE SOLUTION SPACE F-1

APPENDIX G: REFERENCES G-1

0%%

56

9.9

"4.

. .r14% ' . ./ , ,,''y ' . 'J"" ,""" - - 1 ' G '' " ' 2 . {' ,". ," g{'"

,!.

LIST OF FIGURES

Numter Page

2.2-1 Requirements Engineering Testbed Users
C-haracterization 8

3.1-1 Requirements Engineering Process Model 14

3.3-1 Engineering Context Description 19

3.3.1-1 PMS Viewpoints 22
3.3.1-2 Domain Model: Role characterizations 23
3.3.1-3 Domain Model: Example transaction:

"Notify doctor on unsafe condition" 22
3.3.1-4 Goals 22
3.3.1-5 First Solution - Refinement of PMS Viewpoint 24
3.3.1-6 First Solution - Extended Domain Model 24
3.3.1-7 Revised Solution - Refinement of PMS Viewpoints 24
3.3.1-8 Revised Solution - Extended Domain Model 27

- 3.3.1-9 Revised Solution - Extended Domain Model Showing
Two Patient Transactions 28

3.3.1-10 Requirements - Excerpt Showing Doctor's Goal Has
Been Revised 27

3.3.1-11 Functional Prototype - Ward Station - An Excerpt 31
3.3.1-12 Interface Prototype - Nurse Display Mock-up and

Comments Elicited 32
3.3.1-13 PMS Stress Scenario - Excerpt 33
3.3.1-14 Final Requirements & Solution Architecture - Only

New Changes Shown 35

3.3.2-1 Domain Model 38
3.3.2-2 Goals 38
3.3.2-3 Refined Model and Gcals 38
3.3.2-4 A Resource 39
3.3.2-5 Extending the Domain Model to Include the Resource 39
3.3.2-6 A Candidate Solution 39
3.3.2-7 Automatic Calculation of Solution Cost and

4 Evaluation Against Goals and Requirements 39
3.3.2-8 Generation of a Scenario Depicting an Unsafe Patient 41
3.3.2-9 Automatic Analysis of the Result of Executing

the Solution Against the Scenario 41
3.3.2-10 Requirements 43k
3.3.2-11 Candidate Solution 43
3.3.2-12 Revised Requirements - Explanation of Modification 43

4.2.1-1 RET R&D Roadmap 46

4.2.2.1-1 Evolutionary Track Roadmap: R&D Efforts to Aid
Making Better Analysis on Requirements 50

4.2.2.1-2 Evolutionary Track Roadmap: R&D Efforts Facilitating
Creation of Prototypes & Scenarios and Analysis

of Results 52

iv
%

4.2.2.1-3 Evolutionary Track Roadmap: R&D Efforts Facilitating
Measurement of Tools in an Integrated Testbed 53

4.2.3.1-1 Formal Language Track R&D Roadmap 62

E.1.2-1 Domain Models R&D Effort E-9
E.1.3-1 Requirements - R&D Effort E-14
E.1.4-1 Requirements Analvsis Methodology R&D Effort E-19
E.1.5-1 Dynamic Analysis R&D Effort E-27
E.1.7-1 Scenario Generation Support &

Scenario Coverage Analysis R&D Effort E-37
E.1.9-1 Scenario Execution and Analysis of Results

R&D Efforts E-45

E.1.10-1 Estimation of Time, Cost, Risk
In System Development, Performance &

Execution Costs Analysis R&D Efforts E-52

E.1.11-1 Requirements Evaluation R&r Effort E-61

E.1.12-1 Testbed Effectiveness R&D Effort E-66

E.1.13-1 User Interface P&' Effort E-72

E.1.14-1 Database R&D Effort E-79

E.1.15-1 Evclutionary Testbed Integration R&V Effort E-84

E.2-1 Formal Language Approach Roadmap E-87

4
' %'2'

kS -z-

0

1 1.0 EXECUTIVE SUMMARY

A panel of computer scientists was tasked to define a ten-year
research and development program for RADC's Requirements
Engineering Testbed. The purpose of this report is to present the
panel's findings and recommendations.

1.1 General Background and RADC's Goals

RADC's charter to the panel, to define an R&D program, was based
on existing RADC goals and plans. These are discussed below.

Incorrect requirements lead to the development of systems that
cannot be fielded because they do not address all critical mission
needs. Within the Air Force, existing requirements tools and
methods go largely unused because they fall short of what Is
needed to produce correct requirements for complex systems and
software. Even among software contractors, existing tools and
rethods have not been quickly adopted. Air Force users have great
difficulty in recognizing and tracking their mission concerns in
requTrements specifications, because they tend to be large,

* complex, ard written for the technical community. Thus, Air Force
users need better tools and methods.

Therefore, RADC proposes to develop a Requirements Engineering
Testbec (RET) to support the development and evaluation of new
tools and methods. Air Force users would use the RET to define
and exercise their requirements for planned operational systems.

A secondary aoal of RADC is to encourage use of the new tools by
A r Force users and industry; the RET would be the vehicle.

In the near term, RADC is developing prototyping tools that will
assist Air Force users in requirements understanding and In
investigating their implications. RADC plans to have these tools
hosted in the RET by 1988, with additional requirements
engineering capabilities added by 1990.

1.2 Panel Findings and Renommendaelons

To help achieve their RET goals, RADC identified the need for a
ten-year research and development (R&D) program to guide them In
the development of new tools and techniques. RADC appointed a
panel of computer scientists from academia and industry to define
such a program.

To help define the objectives for the R&D program, the panel
*1 created:

(1) a model of the requirements engineering process,
capturing the panel's understanding of that process; and

(2) two scenarios Illustrating the process model In terms of
PET capabilities, one for 1990 and the other for 1995.

* 15
,-p.

The model provided a basis for defining the R&D program: the R&D
program would have to provide tools and methods to support process
model activities. The scenarios provided a complementary basis:
the R&D program would have to provide tools and methods that would
work together In the way envisioned and provide the Illustrated
capabIlities.

The panel then defined the R&D program as the strategy to bring

all this about..

Recommendations

The panel recommended that RADC pursue:

A research and development program for the Requirements
Engineering Testbed (RET) consisting of two tracks: (1) an
Evolutionary Track for developing tools and methods such as rapid
prctotyping that in the near term give the best payoff in better
requiremerts, and (2) a Formal Language Track for exploring the

* i.er risk/payoff implications of a formal requirements language.
Tre rsk ir the Formal Language Track is that one must be able to

"4" express requirements formally. The payoff is in the formal
actities that car be automated. Determining requirements
satisfaction and generation of scenarios are examples.

The panel's 1990 and 1995 RET scenarios respectively illustrate
capabilities that would be made available through the Evolutionary
and Forral Language Tracks. The panel concluded that both tracks
should provide the RET user with better analysis and trade-off
capabilities than are currently available.

The panel further recommended a testbed Integration plan for 1990,
that would lead to a uniform user Interface to all tools and a
common repository for all requirements, designs, and tool data,
and which incorporates RADC's currently-contracted requirements
tools. This recommendation is based on a short-term goal of a
loose coupling of the tools.

A review of this report was conducted. The review results are
presented in an epilogue (section 6.0). In general, the report
was found to be techincally sound.

* 1.3 Overview of the Research and Development Program

The R&D program consists of R&D thrusts In these areas: (1)

- prototyping, (2) requirements analysis, (3) tool integration and
evaluation, and (4) a formal language for requirements and
specifications. The objective of the Evolutionary Track Is to
provide better capebilities and more automation in the first two
areas and to accomplish and support the third area. The focus of
the Formal Language Track Is the last area. Below, we summarize

24

*0'. e f
% %4 ~.*"N~-4 4-.*

' ;.~' .%

0

each area, Identifying capabilities to be developed by 1990 and
1995, anc how these relate to PET goals.

Prototyp ing

In prototyping, the 1990 goal is to develop capabilities In: (1)
prototyping system Interfaces and functions, (2) developing
scenarios to drive the prototypes In experiments, and (3)
collecting and analyzing results. The 1995 goal is to extend
capabilities for analyzing prototyping results.

Relationship to RET goals: End users are generally able to
analyze their mission concerns better in operational settings than
by reading lengthy, textual requirements specifications. Thus
prolotyping will play an important role in discovering and
understanding critical needs, and therefore In capturing these
reeds in the requirements. Prctotyping will also provide a
feasibil ity check, ana when later supplemented with performance
analysis, will serve as a basis for sensitivity analysis on
requ irements.

Ir requirements analysis, the 1990-1995 goals are to be able to
analyze requirements to investigate assumptions, decisions,
irplications, and requirements quality: (1) expected cost and
risk of developing the envisioned system, (2) expected cost,
erftrmance, and reliability of operating the envisioned system,
(3) the rationale for a particular mission need or trade-off
cecision, (4) requirements related to specific needs and
expectations of a particular end user, and (5) which requirements
are untestable, contradictory, or redundant. The key to achieving
these goals will be to represent requirements more precisely,
strongly couple the analysis to requirements updates, and identify
relevant metrics. Another goal is to provide a methodology to
guice the user in the use of these analysis capabilities.

Relationship to RET goals: Requirements correctness and quality
will improve. Air Force users will use the analysis tools to

0 Investigate their concerns In the requirements Including the
rationale and Implications of decisions that were made.

Tool Integration and Evaluation

In the Integration and evaluation of tools, the 1990 goal Is to
• provide state-of-the-art database and human Interface capabilities

as a basis for an integrated testbed of tools and for monitoring
tool performance. The 1995 poal Is to Integrate new prototyping,
requirements analysis, and formal language capabilities into the

instrumented RET to facilitate their evaluation.

Relationship to RET goals: A common database implies tools will
be able to share data. A common user Interface Implies user

0learning time will be reduced. Both imply the user will be able

%-,
%, t

to move easily from one tool -o another. Development efforts will
be reduced - new tools can use the same data management facil ities
and util Ize the same human interface mechanisms for user
communicatior. An Instrumented and integrated testbed Is a basis
for evaluating relative tool effectiveness.

Formal Lanauaae

In the formal language area, the 1990 goal is to provide: (1) a
common formal language for requirements and specifications and (2)
tools that automatically compare requirements and specifications

.- statements. The 1995 goal is to provide: (1) the capability to
generate and interpret scenarios and (2) extensions to the
language that facilitate Incremental modifications and multiple
levels of abstraction.

Relationship to PET goals: Requirements statements will be

precise and machine-Interpretable, leading to increased automation
arAd support for prototyping, requirements analysis, and

- development activities. These implications are long-term
Sconsequences cf the formal language approach.

-:-,

g%

C:.%

'-p. -

* 4

d1-.W 2.0 1 NTRODUCT I O,

The purpose of this section is to establ ish a context for
understancing the panel's recommendations. The panel's
recommendations are presented In sections 3 and 4.

In summary, the context is this: (1) the Air Force needs better
requirements tools and techniques, (2) RADC's approach to meeting

this need is to create a testbed for development and evaluation of
new requirements tools and techniques, (3) RADC convenes a panel
of computer scientists to refine the testbed plan and to recommend
a testbed research and development program, and (4) the panel
makes recommendations based on the current state of the
requirements process: available tools, characteristics of
requirements, and methods of checking requirements.

Before dealing with the context In detail, we define some terms.

Recu i rements Term inolcgv

Requirements are precise statements of need which characterize a
* needed system in terms of its external characteristics (especially
... -interfaces and functionality visible to the user) and constraints

(e.g. or execution performance and reliability, and on development
cost and time).

Requirements engineering is the systematic application of tools
and technicues to guide and control the emergence of the

-s. requirements product. It is an iterative process of analysis,
,--5 evaluation, and refinement. Its inputs are mission-related ideas

and problems expressed by mission specialists and their
representatives. Its output is the set of requirements.

2.1 A ; r --,rce Pec.uireets Prob I en

As part of an RADC-sponsored effort, an informal survey of Air
Force users (specifically, mission users and acquisition

. engineers) and contractors was conducted. The survey consisted of
i'-1 25 Interviews with both Air Force users, other Department of
* Defense users, and contractors. The survey Identified three major

problem areas:

(1) Requirements specifications were written for procurers
(acquisition engineers) and their technical staffs. Thus

-.5 mission users found them to be too technical and felt "shut
* out".

(2) Mission users and contractors found it difficult to
relate A-spec to B-spec (i.e. high-level system

Sspecification to software requirements) because of the
significant "gulf" between them.

% %b .

(3) Contractors and mission users complained that
traceability coulc only be demonstrated manually, making it
hard to assess requirements coverage.

In summary, Air Force users found it difficult to preserve a
recognizable representation of mission user concerns in the
derived specifications.

The survey also found that most mission users who could have used
a requirements method/tool (e.g. PSL/PSA) never did, and not one
of those who did considered the use to be a success. So

4 requirements engineering methods and tools are underutilized by
Air Force users. They are based on technologies such as: formal
specification languages, consistency checkers, and report
generators. Those methods and tools that are not difficult to
master do little more than check how well things fit together
syntactical ly. Instead of stating his needs and making decisions
at the mission level, the user is forced to work at a design level
or use the English language. The conclusion: existing methods
and tools match the needs and abilities of system developers
instead of Air Force users.

S

2.2 RAD'S SSLticn t, tle Air Force PeQuirements PrcLjslm._
.Rqujrerents Eigineering Testhed (RET) Cret

The Recuirefments Engineering Testbed

To deal with the Air Force requirements problem, RADC's long-term
(.N goal is to develop and evaluate new tools and methods that wili

enable Air Force users to bring new technologies to bear on their
requirements engineering problems.

Eut these new tools and methods cannot be developed in isolation.
They need to be evaluated on realistic problems and placed Into an
environment that supports their use by Air Force users.

Therefore RADC proposes the creation of a facility which promotes

experimentation, called the Requirements Engineering Testbed
* (RET), and which hosts the new methods and tools. Air Force users

will use the RET to define, analyze, and exercise requirements of
planned operational systems. This will have two benefits. First,
new tools and methods will have early exposure on realistic

problems, encouraging their use by Air Force users and Industry.
*I Second, evaluation of the new tools and methods in terms of

requirements quality and productivity will provide Insight for the
next generation of tools.

We next characterize the users of the RET. This is followed by a
discussion on hosting RADC's currently-contracted prototyping

Ai-. tcols in the RET in early 1988, and a subsequent integration.

0
.,. ~%

*L

RET Users

The RET must support the requirements engineering activities of
.. three user classes In the evaluation of new tools and methods:

Air Force mission users, Air Force acquisition engineers, and
contractor software developers. Figure 2.2-1 defines their Jobs
and characterizes their present and projected future familiarity
with computers and programming.

The RET must concentrate on supporting the mission user and
acquisition engineer In keeping with RADC's mission and because
support for these classes has been neglected by the current
generation of tools.

These two users have different requirements concerns and
interests. Mission users are Interested In: the data (messages)
which must be processed, the user interface, performance (e.g.
workstation ergonomics and work flow), and scenarios. Acquisition
engineers are interested in: functicnal characteristics of the
target system, Its software requirements (database management

* system, utilities), testing, and performance.

In order to better understand the context of the RET, the panel
developed a rore detailed characterization of the three user
classes. Appendix A presents the panel's characterization.

e Terr RET Prototyping Tools..

RAC currently has three different prototyping tools under
contract to be developed. In the near term (early 1988), these
,hree tools will be hosted by the RET and will provide its initial
requirements capabilities:

(I) The Analyst, an existing requirerents tool currently
being enhanced by Systems Designers under subcontract to
Imperial College, will assist in the creation of a

S. semiformal problem domain description. The tool also aids
documentation of performance and reliability stress points.
A prototyping capability will estimate performance based on
estimated work loads.

(2) The VHLL Prototyping took, to be developed by
International Software Systems, will assist In the creation
of functional prototypes. A VHLL (very high level language)
Is used to specify the desired functionality of the target
system. The resulting description is executable and can be
exercised with different inputs dynamically.

(3) The Rapid Frototyping System, to be developed by Martin
Marietta, takes a model-based approach to prctotyping;
aiding the production of operator models, processor models,

* scenario-driven functional models, and communications
models. Within these models, system performance can be
estimated based on estimated work loads and target system

7V ,

,, , K. -. .' ... " " _..-./.'.v _- -. ,"._", % " - \.J % 7 w , ,,- P ,

* 4-
c

Ln 0 0
4.. U --

4C a 0 'c
4- CD 0

L. 4.1 1 %
7S 1 0 C 0f C -

LU 0 EC =' 2
LU U,~ . 0 06

(D 0 4-) 0 -
r_ 39 0 0 D 0 0) 0

LU 41~ 0 > 0(Do: 4 Q .4J 0m CD 4 4: .. 0

0 0 o I0 c P4I.~ ~
0 0 0 W

(. r_ 0L.i

oL 1.1.

.03~ ~ 03' ,04 .

0 LA
z E

4- C)>

!= vi CL 0 LU
0- E I /)>

tT ~ 04 L 4
0 4 4 0 0 0

% L. L1 AUi
.0 0n 0~ z

0~ LU O C0

f6- C.. - jI
>- 8 L- E 0 z0. 00 C- -- L. '.. U

CO V) 3c 9.L U, C-

0 (D.
C.)~. v) 0 VU >)L

NA 0. to 0)0U .
E. 77 1- 4- '4 0 .0

4J" 00- JL
4OC4 0 U L

4J 0 - .L L
- (0 -C 0 w

L. 4- = 0. L. W

CL t- 0 U.

LL

w- U00 c, 0 J ~ CL 03
0 0 0~~E &f

F

configuration. There Is also a capability provided for
rapidly designing interfaces with dynamic graphics.

RADC plans an Integration effort, which would start soon after
delivery of these tools, and would result in a 1990 testbed of
integrated tools.

2.3 Reguirements Panel Obiectives

To properly plan the Introduction of new methods and tools into
the RET and to help In their evaluation, a long-term research and
development (R&D) program needed to be defined. To assist in the
definition of the R&D program, a panel of computer scientists from
academia and industry was appointed and convened four times during
July 1985 to February 1986.

* The members of the panel were:

Robert Balzer - Information Sci. Inst., Marina del Rey, CA
* 'ichael Konrad - International Software Systems, Austin, TX

C. V. Ramamoorthy - University of California at Berkeley, CA
Winston Royce - Lockheed Missiles & Space, Austin, TX

* .illiam Rzepka - Rome Air Development Center, Rome, NY

Steve Sherman - Lockheed Missiles & Space, Austin, TX
Leon Stucki - Future Tech, Auburn, WA

" Terry Welch - International Software Systems, Austin, TX

Raymond Yeh - International Software Systems, Austin, TX

Rzepka was panel sponsor. Welch was panel chairperson.
Konrad was panel report editor.

Pei Fsia of the University of Texas at Arlington, Texas,
contributed to the panel's efforts.

As stated earlier, the primary objective of the panel was to
define a ten-year R&D program.

A secondary panel objective was to Identify what additional effort
was required to make a full range of requirements engineering
capabilities accessible to the RET user by 1990, based on the
currently contracted tools.

The remainder of this report presents the panel's findings and
recommendations, except section 6.0, which presents results of a

* review of the panel's findings and recommendations.

%[2.4 Current State of the Requirements Process

In this section we characterize the current state of the

* requirements process as viewed by the panel.

P 1591

0I

The current state of the requirements process is that it is almost
entirely a manual process whose success depends on the Insight of
the analyst doing the work. There are no general ly accepted
methodologies, criteria for quality, or notations.

Requirements are almost entirely English text, so they are subject

to differing interpretations by mission experts and by system
developers, namely the two audiences that the requirements
statements should bring together.

Evaluation of Existing Recuirements TechnIques

Existing requirements techniques, such as SREM and PSL/PSA,
provide a methodology for requirements analysis. The methodology
Is supported by tools: (1) machine-processable languages for
stating the requirements, (2) static analysis tools for
determining consistency and completeness of the statements, (3)
simulation tools for assessing feasibility, and (4) report
generators. As an example we consider SREM (ciscussicn Is based
on [Stone] and [Schefferl):

(1() Recuire ents Stateme nu . Many system
characteristics can be expressed, e.g. the system interface
in terns of message flow and content, and system software
functions in terms of inputs, outputs, and processing
cependencies. Certain characteristics are very difficult to
express in the language and so analysts must rely on textual
representations: real-time and near-real-time
characteristics, parallel and distributed processing, man-
rachire interfacing.

(2) Analyss tools. Analysis is performed in batch and results
are presented in generated reports. Two kinds of analysis
are performed: (1) data analysis consisting of syntactic
checks on language statements (i.e. detection of
syntactically missing or misused elements), and (2) data

Z'.: flow analysis consisting of checks that consuming elements
process exactly those elements named In their input. The
SREM evaluators found that most requirements errors (80% or
higher) are caught by the analyst while using the

0 methodology, not by the analysis tools.

(3) Simulation tools. Simulations are partly "generated", but
analysis of results Is manual. The simulations aid
verification of (I) system Interfaces and processing
relationships, and (2) analytic feasibility (is there a
testable design that satisfies the accuracy requirements).
In practice, too much labor Is Involved to justify more than
verification of system interfaces.

-" (4) Rohe _-n system development. Role Is late in the

requirements phase and early In the design phase. Utility

of SREM lies In defining, correcting, and analyzing the
*: software-aspects of a system, I.e. after allocation of

10%

= 10 b m w i ii111! 111 11J

requirements to functional software components. SREM
provides little support in the "conceptual phase":
expressing needs, assessing feasibility, trade-off studies.

Recently [Alford 1985], SREM is being extended to address
concerns that arise earller In the system requirements phase
and also detailed Issues that arise in later design and
testing phases.

In summary, existing techniques provide a discipline for defining
requirements and analyzing them, but are best at addressing late
"requirements phase" concerns. They require a largely manual
execution of the requirements process. It Is not yet evident that
the labor Involved in their use is justified by the improved
results obtained.

Prob lems In Comrunicatirn anrd Analyzing Re4urerentc

* The panel members shared these basic as.umptions about

requirements which guided their thinking:

1 1. ErmpIC.,scr i_ Requirements must be stated with
increased precision. A formal basis for requirererts will
lead to machine interpretation, an important step in
achieving Increased productivity in the design and
verification of software systems.

2. Domain Irforadto p. Requirements are often ambiguous with
respect to assumptions and decisions based on the "common
sense" of such things as the laws of physics, psychology of
people, politics of crgarizations, software algorithms,
application-specific technology (e.g. how does a radar
work), etc. Mechanized interpretation of requirements
recessitates capturing and interpreting this context
information.

3. Prototvpin Communication of requirements statements to
mission experts often requires building a functional
prototype to animate those requirements. This Is because of

[* the poor communication capability of requirements statements
and because many Individuals are better able to analyze
their mission needs when they see operational results.

. 4. Development Facilities. Requirements development, like any
other manual design activity, should be supported by a
workstation environment which provides rapid interaction via
graphics tightly coupled to an object-oriented database.
This type of facility will be commonplace in five years and
provides important capabilities for humans deal 'g with
complexity in large system designs.

IN

S11

-.-. '," , -,% -, ,,. ,i ,'jw ' .- ,,.-.'.," " "," ,,. ,'. ." .,.%.-', '..-w .,".% "...,,-",. ,,,-

rX ir w i

Current Approaches to Checking Requirements

Below we describe four methods in use today to assess the validity
of a set of requirements. Each of these methods Is presently very
labor Intensive, but might be partially mechanized If requirements
statements were more machine-manipulatable.

1. Consistency Checks. Requirements statements as a set can
be checked for contradictions and completeness. Current
techniques, such as PSL/PSA and SREM, provide modest forms
(e.g. dataflow) of checking. Otherwise, the checks are
manual.

2. S. Scenarios developed to Illustrate typical or
stressful system usage serve to provide a cross check on
requirements. The development of precise scenarios is very
time consuming, however, and checking them against
requirements statements is not easy.

3. Protctvpjn. The develcpment of a prototype provides a
check on the implementability of the requirements, as well
as providing a means of eliciting user feedback. To
minirize prototype develcpment effort, one generally
restricts the requirements subset tested (e.g. omitting
error handling and performance) and reduces prototype

development "overhead" (e.g. documentation).

4. Cost Estimates. Major factors influencing any system design
are the costs and risks in development and operation. Thus
these factors must be considered when evaluating
requirements. Present mechanisms for estimating cost and
risk are notably intuitive and often ineffective.

Each of the above fcur areas warrants significant research on
possible automation and/or mechanical support for human execution.
Success in this work, however, certainly depends on increased
precision and machine Interpretation of requirements, so work on
formalizing requirements descriptions is a cornerstone of
requirements research.

0

5.

5
p.5

*1

-S

3.C THE REQUIREMENTS ENGINEERING PROCESS MODEL.

In an effort to come to a common understanding of the requirements
engineering process, especially terminology, and to partially
capture that understanding, the panel created a model of the
process. This section presents that model and illustrates It with
scenarios Indicating RET capabilities In 1990 and 1995.

The appendices contain more discussion and further details on the
process model. Appendix B relates process model terminology to
the current Air Force requirements engineering practice. Appendix
C gives detailed characterizations of process model Information
types and activities. Appendix F discusses philosophical problems

,. Inherent In requirements engineering that can have no solution In
terms of a "better tool".

3.1 The Mcdel

The model is portrayed in figure 3.1-1. The figure shows
information depicted as boxes; and activities depicted as circles,
ovals, and rounded-corner boxes.

The model indicates the dependencies and sequencing between
activities, but is not meant to favor a particular methodology.

Infcrrtation Types

The model identifies three major types of information: goals,
requirements, and solution architectures.

aaC-o are expressions of cbjectives and needs, general ly mission-
related, and not necessarily feasible or consistent with each
other. Mission users are the primary sourze.

Reguirements are a consistent subset of the goals which can be
feasibly realized within the available resources (especial lv time,
money, and expertise).

A Solution architecture Is a model of the target system as a
* composition of parts that satisfy the requirements. The more

common term Is i c.aio.noii, but the panel preferred solution
architecture, as specification has been used to mean different

, .. things.

%0.

.0 - .0

%, ,%

% " 0 -- ,)L

N15 ~~~*~~ tWW* V'Y' 7. .- I tVY UV'W~VV~rrW'- In FV. PN-,i X,7IL 9 bL.W'KX ~Wi NMW WW'J NW]

I _fotcnsrit

docuenttegrt

itgaeacross roles

scenariosI

0performance/reliability.

*~~ei reqqueeitecadidtes

-evaluation & architecture requirements
reformulatio

'4,5

-a'.anlyi mid________________12rottyoiI
LEGEND:

a.* ~~~all numbered arcs reference________________
'DMA 1~LMODELS off each starred box there Is a bubble.
a'- 1. Mission Models
02. Application Domain Models ttcaayi

3. User cognitive Models ! consistency &conpletene 14. Software Resources, Algorithms *derived po erties

5. Hardware Models (Processors, Networks)I
Figurt 3.1-1 Requirements Engineering Process Model.

14

3.2 A Walk-through

We take a top-down walk through the requirements engineering
process model, Identifying the objects and activities depicted in
the figure. For the walk-through, we assume a requirements
engineer is required to produce a set of requirements for a system

called the "target system".

The target system must support the different roles of Its users
and administrators. Thus there will be different expectations, or
"viewpoints" of what the system should do, of how well It should
be done, and within what cost. In the model these undocumented
expectations of target system functions, performance, and cost are
represented by Wish1List. There is one wish list per role or
viewpoint.

The requirements engineer is limited in the time he can expend In
the creation cf target system requirements. Thus he needs to
prioritize his objectives. These limitations and objectives
should bcth be documented. In the model they are represented by

lngln-eeinc Ccntext Description .

Through interviews with target system users/administrators and
through references to documentation of similar, existing systems
and their environments, the requirements engineer collects and
organizes information on the operational context of the target
system. The resulting Information forms a DQiLgaJ iQd[of the
environmert of the target system, providing the terminology and
context through which wishes can then be expressed, forming Goals.
Goals represent the initial attempt at documenting a system's

a. desired attainments. For each viewpoint, there will be one set of
goals, and they should be consistent and ccmplete within that
viewpoint.

Goals are often inconsistent across viewpoints or clearly
Infeasible. Such difficulties must be resolved by the
requirements engineer through further user Interviews. The
revised goals are then merged into a preliminary set of
Reguirements for the target system.

Through his Interviews with users, the requirements engineer
identifies and documents ScnariosQ that Illustrate typical target
system behavior and/or desired responses to stressful Input.
Scenario construction and analysis may aid stating the
nonfunctional requirements, In particular, performance and

* reliability.

During the creation of goals and requirements, their consistency
and completeness Is checked. This is called Static Analy.1s In
the process model. To determine requirements coverage, the
requirements engineer might perform a walk-through, analyzing the

dataflows and/or stimuli/responses through the various viewpoints.
This Is called Dynamic Analysis in the process model.

""

At this point, the requirements engineer might construct a
Sclution Architecture to gain better insight Irto: target system
interfaces, functions, performance and rel lability, and implied
development cost and risk.

The requirements engineer creates a solution architecture by
specifying how the target system is composed of parts (e.g.
objects, functions) and how those parts use resources (e.g.
people, software, hardware). To aid specification of resources,
the requirements engineer can make reference to existing resource
models.

From the solution architecture, the requirements engineer can
specify a prototype. He executes the prototype against canned or
user-controlled scenarios, eliciting user comments on what should
be changed. All of these activities are covered by the _Bpp-
Prototyp"ng bubble in the process model.

Also, the requirements engineer can do AnalysL directly on the
sclutiOn architecture. By combining botn rapid prctotyping and
analysis activities and iterating, the requirements engineer can
do sensitivity analyses.

As a result of the insights gained through analysis and rapid
protctypinc, the requirements engineer determines what revisions
should be made and makes them. This activity is called
LP . _.Gr.erts Evaluat ,*n R _efo tjpD. in the process model.

-- Thee ray be several iterations of prototype, analyze, evaluate
- and reformulate. The resulting recuirements and solution

architecture is cal led the F-inal Pecuiremei _ _tal
- _ in the process model.

0

0

'U-

-6 ,
-.7-&1i

.
-.

p .M

l-*

' .h.,

uig~i

For the purpose of explaining the panel's vision of near-term and
long-term RET capabilities, the panel developed two scenarios, one
for 1990 and one for 1995. Thus these scenarios Identify "where
to go"; the RET R&D program, detailed In section 4, Illustrates
the panel's strategy of how to get there.

We make free use, below, of process model terminology and
references to currently-contracted tools.

Scenario Context: 1990/1995 ObJectives for the RET

The panel recommends that a primary 1990 RET objective be to
provide the RET user with a wide range of requirements engineering
capabilities based on three integrated tools: the Analyst, the
Rapid Prototyping System, and the VHLL System Prototyping tools.

This objective is the context for the 1990 scenario, whose purpose
is tc illustrate these Evolutionary Track capabilities.
Capablaities from the other track will not yet be generally
availatle.

Similarly, a prirrary objective for the 1995 RET is to provide the
RET user wih a wide range of capabilities based on a single
formal language for expression of requlrerents, solution
architectures, and goals. This objective is the context for the
1995 sceraric, which thus emphasizes capabil ities developed under
116e Formal Language Track.

Sce rar ic Statip aZILPointr

Both scenarios consider the same nontrivial application, a patient
monitoring system (PMS), and address essentially the same trade-
cff problem: defining requirements for a PMS of low operational
cost that meets the need for Immediate nurse or doctor
notification of a patient problem. Thus both scenarios can be
compared to contrast what we envision can be done in 1990 and

I •1995.

The two scenarios have the same starting point: the requirements
engineer visits the RET with the Intent of using RET tools and
techniques 1o define PMS requirements. As the RET is a facility
for tool effectiveness experiments, careful tracking of RET user

* objectives and RET resources (e.g. tools and RET time) is
necessary. Toward this end, the "Engineering Context Description"
documents the objectives of the RET exercise and how much effort
can be spent. For both 1990 and 1995, it Is expected to be
maintained as mostly unstructured text in the PET database.

* 17

i .7,
S

v
S ""~. , -." ". ?-_,

% ~~., .. . % .% .w _ _.= _ 'w- " " .. - ~. - = .

"!."

Figure 3.3-1 I lustrates the Engineering Context Descripticn
considered as context to both the 1990 and 1995 scenarios. In
both scenarios, the objective of the RET exercise Is to gain
Insight into the trade-off between two competing wishes. For the
1990 scenario, a third wish was needed to motivate the
Illustration of the currently contracted tools. It must be I
ignored when considering the 1995 scenario.

Where do these wishes come from? In a typical PMS, patients are
monitored and If anything goes wrong a nurse or doctor is alerted.
So the three obvious PMS users are the doctor, the nurse, and the
patient. Less obvious Is the hospital administrator who must show I
a profit. In both scenarios, it is assumed that interviews and
relevant documentation have revealed these needs: (1) doctors
need Immediate notification if there Is a sericus problem (wish
1), (2) hospital administrator needs to keep operational costs
down (wish 2), and (3) (only for the 1990 scenaric) rurses need
help tracking patients' care. Typically, investigation will
reveal rary needs fcrming "Wish Lists", but %e will only deal with
these three.

I

-..

! .".~~~~~~~~~~~~~...-..............-....................-. -,.-,.....,.,.--
- .,.-.,. . .-..-..-.. : .- ,.-. .. .-... ,.. . ,-... .: - . .:.., :.. . , ., :: -..- ... ,.: - : . . - , ,. .: . : :.. h;

SYTEM : PATIENT MONITORING SYSTEM

GOARL ET ERcisE:

OBTAIN INSIGHT INTO THE TRADE-OFF BETWEEN THESE WISHES:
(1) DOCTOR: RAPID RELIABLE NOTIFICAT:ON ON PATIENT

PROBLEM
(2) HOSPITAL ADMINISTRATOR: Low OPERATIONAL COST.

(3) NUIRSE: HELP TRACK PATIENT'S CARE.

R;L.EFEL.B: CANNOT EXCEED 5% OF EXPECTED SYSTEM COST

1 MONTH TIN',E FOR DEMONSTRATION OF WHAT IS FEASIBLE

FIGURE 3.3-1 ENGINEERING CONTEXT DESCRIPTION

.1

L

"" 19

0

3.3.1 1990 Scenario

The 1990 RET will facilitate:

Partially formal characterizations of:
The problem domain
Functional requirements and some nonfunctional requirements
Displays, Interface protocols
Scenarios
Solution architectures
Data structures (*)

Support for:
Organizing the problem domain
A functional description of the system
Building executable models
Building performance models and scenarios
Exercising prototypes against scenarios (*)

The scenario illustrates this RET usage paradigm:

• Establish RET exercise objectives
rCreate a "domain model" documenting user roles and activities
This domain model will expand to Include solution resources

Express goals
Goals are expressed as attributes or annotations to the
domain model

"4 Evaluate for feasibility and trade-offs:
Explore different solution approaches and then revise

4 ~Incorporate analyses and prototyping resultsC)
Document results of RET exercise
Traceability of goals to requirements to solutions (*)

* (not illustrated in 1990 scenario)

The figures for this scenario illustrate notations that are
- logically equivalent to the graphics/text notations that will be

available in 1990 RET tools.

4,€ Recalling figure 3.3-1, we begin the 1990 scenario. We refer to
the hypothetical RET user as a "requirements engineer".

Deriving Goals

* Applying the CORE method, which Is supported by the Analyst tool,
the requirements engineer first identifies the major PMS
viewpoints (i.e. the functional roles with which PMS interacts).
They might be Illustrated graphically as shown In figure 3.3.1-1.
The requirements engineer will iInterview viewpoint representatives
(e.g. the head nurse), documenting all relevant Interactions and
wishes.

From such interviews, the requirements engineer constructs a
domain model of the operational environment of the target system.
Figure 3.3.1-2 Illustrates a portion of such a model (underlined
words are keywords). The domain model would also represent
typical "transactions", e.g. "notifying doctor on unsafe

condition", as Illustrated in figure 3.3.1-3.

Figure 3.3.1-2 Is not complete, among the activities not shown
here but referenced later: the patient can request a nurse
(activate a nurse alarm) and PMS will pass this patient request to
a nurse.

The domain model (figures 3.3.1-2 - 3.3.1-3) provides much context
necessary for expressing and interpreting Goals. Wishes
constraining operational parameters such as time, reliability, and
operational cost will often be expressed In 1990 as formal
attributes or informal annotations to transactions (whether formal
or informal is not yet clear). Two of our figure 3.3-1 wishes can
be so expressed: the doctor's performance and reliability wish
and the hospital administrator's cost wish. The nurse's wish will
likely be expressed in informal text. See figure 3.3.1-4.

The requirement engineer's objective is to analyze the trade-off
between these performance and cost wishes. To dc this, the
requirements engineer will treat the goals as preliminary
requirements and explore solutions.

At this point in our scenario, we assume the requirements engineer
interrupts application of the CORE method to better understand the
solution implications. The knowledge accrued will help hir refine
and revise the goals Irto requirements.

Ceriing a Ca date SolutionbAjhitgctureu

The requirements engineer needs to consider how to build a system
that will satisfy the Requirements. He decides on the following
approach:

(1) For monitoring vital signs and detecting unsafeness, use
* a "hardware monitor" (one per patient).

(2) For doctor notification, locate a "ward station" In each
ward. The nurse(s) will have responsibility for
patients in his/her ward and will notify the doctor
on any unsafe patient condition as reported by the

* ward station.

"-b Figure 3.3.1-5 shows PMS functionality allocated to hardware
nonitors and ward stations. Figure 3.3.1-6 gives partial

9. ~ characterizations of a hardware monitor, a ward station, and how
they constitute a PMS solution. The notation employed is the same

* as In figure 3.3.1-2. A (probably manual) check will verify that
,; the composition of their activities is a correct refinement of PMS

activities of figure 3.3.1-2.

-- p

21
0'I

.5. V15 g

.~ SYSTEM
VIEWPOINTS[

FIGUE 3.3.1-1 P VIEWPOINTS.

vitl s ig Detect unsafe emergency Finds doctor call
[Patient', Ls vital sians Eotification Docrl LDoctor

t t
PMS Nurse

e Detects
"I signs unsafeness

Nurse
I

FIGP,E 3.3.1-3 D2mAIN tCEL: EXAt LE TRANSACTION:

ItTIFY DOCTOR CN LNSAFE CON"DITION".

1. TRANSACTION "NTIFY DOCTOR ON UNSAFE CONDITION"

-LIABILT = 99. OF NOTIFICATIONS ARE REPORTED
DURATIO= IvtAED IATE

SQRC, DOCTOR

- 2. TRANSACTION "NOTIFY DCTOR ON UNSAFE CONDITION"

* OCRATIONAL nST < $100/PATIENT/DAY
.ou = ; HSPITAL Ai4INISTRATOR

3. TR.r-K PATIENT'S CARE

* = XEr, NURSE

- FiSJRE 3.3.1-4 GOALS.
~- 22

V ~ I F,,2I N PAT IENT

AcIiviIyi PRODUCES VITAL SIGNS

DER~i IVES VITALT SIGNSREIVDB

OIEa STATUJS CHECK GENERATED Bff NURSE.
DERIVES H-EALTH SIGNS ECEIVED BI rJRSE,

AciYifl DETECT UN SAF E VITAL SIGNS

LU~ VITAL SIGNS GES EDI Eff PATIENT.
DERJ.VE5 ENERGENCY NOTIFICATION RECEIVEO Bj NUJRSE,

kZVT DETECTS UNSAFENESS

U5U. H-EALTH SIGNS GENERATED BI PATIENT
CEIE DOCTOR CALL RFCFLVin B1 DOCTOR.

ACTVIT FINDS DOCTOR

L15E$ RERGENCY NOTIFICATION QFNEEAIP. RY WS,
£CEUP COCTOR CALL RECFEDLE- a D)OCTOR.

4--IVJT CHECK PATIENT

*DERIVES~ STATUS CH-ECK RECIVE BX PATIENT l

Viho DOCTOR

Aciv~ TREAT PATIENT

USU DOCTOR CALL. WGEEAIE BI NJRSE.

FiGuRE 3.3.1-2 Icv.A1N MmfEL: ROL.E CIHARACTER IZAT IONS.

231

11 JI WA ~ ~ - ' ~ * ~ S~,

W~NITOR STIO

FIGURE 3.3.1-5 FIRST SOLUTION - FIN&vENT OF MIV VIEWPOINT.

VIEWPOiI HARDWARE tVCNITOR

ACIVITYf DETECT UNSAFE VITA.. SIGNS

16E VITAL SIGNS..
DERILVES UNSAFE CONDITION EEIVFQ aX W~AD STATION
A7,Ri~u~ri FRaF- = 12 SECONDS

DURATION = 3 SECONDS
gEAIJ.NI r $50/PATIENT/AY

V!*,P ~ L ElJVIRD STATIOCN

ACI.V I T SET ALAPM

UY- UNSAFE CONDITION G;EE BI KX ARDWARE MONITOR

DERIVES EN~ERGENCY NOTIFICAT ION REEIE j t'RSE.

LTVT PASSES PATIENT REQUEST...

FiajpE 3.3.1-6 FIRST SOLUTION - EXTENDED CCvIAIN NtCEL

&ETTER MONITOR STAT ION

FIGURE 3.3.1-7 REVISED SCUTrION - E.FINe/ENT OF Mt~ VIEW INS

24

N*'1I*& JS M 111112% 12

I~ btI r'SW-L V11

I.*%

To benefit from consistency and completeness checking, the domain
model of figures 3.3.1-2 and 3.3.1-3 (designated here as DM I) can
be extended to Include figure 3.3.1-6 characterizations.
Equivalent PMS activities should then be deleted. We designate
the result DM II. In this way, Goals, Requirements, and Solution
architectures can be made to share (though different versions of)
the same domain model. DM I reflects the domain model referenced
by the Goals. DM I, has a particular solution "hard-coded" In,
but versioning preserves DM I, facilitating tracking across
solution revisions and refinements.

Note under activity "detect unsafe vital signs" (figure 3.'.1-6),
the inability to easily express which ward station should receive
the "unsafe condition" data. The lack of better formalisms leaves
the sclution's specification ambiguous and appeal must be made to
use of free text.

Cost anflycss

* Analysis of the operational cost must be performed manually. The
goal of $100 per patient per day is stated in figure 3.3.1-4. The

cost irplied by the solution is over $500 per patient per day,
because: (1) the solution implies that all patients will be
hooked up to a hardware monitor every day of their stay, and (2)
this cost alone is $500 per patient per day (figure 3.3.1-6).

Thus another solution is desired, one In which not every patient
is connected to a hardware monitor every day of their stay.
Ferhaps frequent nurse visits could replace use of a hardware
nionitor most patient days. This suggests the next solution
attempt.

__.Pevj .t on arch it ec t urfeLU __e t..

Still attempting to find a feasible solution, the requirements
engineer tries this approach:

(1) Patients in Intensive care will be hooked to hardware
monitors.

(2) Remaining patients, "Fair or better", will be regularly

visited by nurses on rounds.

(3) All patients will still have access to a nurse alarm.

(4) OMS, I.e. the Ward station, will Inform the nurse of:

A critical situation (1 above),
When it's time to check patients (2 above),
Or of a nurse alarm occurrence (3 above),

providing a form of patient tracking (addresslrg goal 3,
figure 3.3.1-4).

* 2 5

gel, .' -,

Thus two different kinds of patients must be recognized. This is A
reflected In figure 3.3.1-7 (PMS functionality will still be A

allocated between Hardware monitors and Ward stations). Their
different needs are characterized In the revised domain model
illustrated in figures 3.3.1-8 and 3.3.1-9, in which the solution
Is again Incorporated. Figure 3.3.1-9 replaces the original
patient transaction (figure 3.3.1-3) with two transactions, one
for each type of patient.

It is assumed that as a result of discussions (with doctor
representatives, etc.) on the cost Implications of immediate
notification and the strategy behind the revised solution, It is
determined that the doctor's goal of immediate notification on

aunsafeness (figure 3.3.1-4) can be relaxed. The result is the two
(preliminary) requirements Indicated in figure 3.3.1-10, which
reference the transactions shown in figure 3.3.1-9.

A the Revise Solut ion.

Various analyses can be applied to the solution to gain insight
irtc its appropriateness and feasibility. Some of the analyses

I will be supported by planned 1990 RET tools, others rust be

performed manually.

a'.

Carried out manually. Can goal 2 of figure 3.3.1-4 be met? Let:
= number of intensive care patients, average per day.

F = number of other patients, average per day.
Assumptions:

(1) Frequency of "Make rounds on patient" = 2 hours (for
each fair or better patient).

(2) Time to "Ilakes rounds on patient" = 2 minutes (per
patient).

(3) Time to "Gives health signs" = 1 minute.
(4) Time to "Detects unsafeness" = 2 minutes.
(5) Wage of Nurse = $25 per hour (loaded hourly rate).

These assumptions Imply a fair or better patient operational cost
Iof $25 per patient per day (because 12 checks per day times 5
a" minutes per check (assumptions (2) - (4)) = 60 minutes per day,

and 1 hour per day times $25 per hour = $25 per day). Assuming
- the relative number of patients of each type satisfies:

(6) F > 5.3 * I,
the operational cost goal can be met.

I

e

"= = . = % " ". - % % % "- ". x " . . % "wj. *.". , " % ", . =.%.. ". • •"" %' % *= " " " w
%

'" % "a.

VIEIZ INTENSIVE CARE PATIENT

JYACTV i PR=CES VITAL SIGNS
DRIVS VITAL SIGNS RECIVED BY HARDvWARE ?VDNITOR

(OTHER ACTIVITIES AS IN PATIENT VIEWPOINT FIG. 3.3.1-2.)

VIEPOINT FAIR OR BETTER PATIENT

AIJY..Lf GIVES HEALTH SIGNS
u STATUS CI-ECK aNEEAIr By NJRSE
DERIVES HEALTH SIGNS RECEIVED EX NJRSE

... (OTHER ACTIVITIES (EXCEPT "PRODUCES VITAL SIGNS") AS IN PATIENT VIEWPOINT

FIG. 3.3.1-2.)

-L poiI HARWmARE IVONITOR

AcTIVITY DETECT UNSAFE VITAL SIGNS
U,,#Ea VITAL SIGNS GENERAIM BYX INTENSIVE CARE PATIENT...

V P iARD STAT ION

SACTVI PROI +TS FOR ROUNDS
DERIVES ROUNDS NOTIFICATION RECEL By NURSE.

go (OTHER ACTIVITIES AS BEFORE.)

AciJvifl MAKES ROUNDS ON PATIENT

USES ROUNDS NOTIFICATION NE M WBARD STATION

DERIE.S STATUS CHEm REcE. By FAIR OR BETTER PATIENT.

as, (OTER ACTIVITIES AS BEFORE.)

FiGuRE 3.3.1-8 REVISED SOLUTION - ETrvED DaAIN NMCEL.

Ims iN "NoTIFY DOCTOR ON UNSAFE INTENSIVE CARE PATIENT"

REUiAIILITy = 99% OF NOTIFICATIONS ARE REPORTED
puEAT .oN = 35 SECmOS
,. E = DOCTOR

S ITIFY DOCTOR ON UNSAFE FAIR-OR-BETrER PATIENT"

RE.AJ.I = 99 OF NOT IF I CAT I ONS ARE REPORTE)
D= 2 HOURS
s = DOCTOR

FiURE 3.3.1-10 (UJiREvENTS - EXCERPT SHOWING DOCTOR'S GOAL HAS BEEN REVISED.

27

7 ~~ ~

00

0

CIOu

IN c

~~CIS
o cu

0 0 CU

cn 0
io 0E

-% NI0

0 A 0)~0 0
cc

4- cc)

d a. ci

QL LL

- 28

Performance Analysis

Carried out manually. Can the notification requireents (figure
3.3.1-10) be met? The requirements engineer estimates and
allocates time to the activittes.
Assumptions:

(1) Time to "Find doctor" (e.g. by beeper) = 10 seconds.
(2) for "Makes rounds on patient": if nurse Is given 15

minutes advance warning, the nurse has enough free
Ltime to check on a patient within that time.

(Note that a check takes 5 minutes according to the
Cs t cost analysis assumptions.)~~Constra ints :

(3) Time to "Set alarm" = 5 seconds.
(4) Frequency of "Prompt for rounds" = 2 hours (per patient).

Issues "prompt" 15 minutes before patient must next
be checked on a round.

Above, (1) and (3) ensure the first notification requirement can
be met (sum: maximum time it takes to "Detect unsafe vital signs"
(figure 3.3.1-6) + duration of "Set alarm" + Curation of "Fird
doctor" = (12 + 3) + 5 + 10). Above, (2) and (4) ensure the
second notification requirement can be met (when function "Prompt
for rounds" gives a prompt, (4) says that the nurse has 15 minutes
to check the patient on a round, but (2) says that 15 minutes is
sufficient to ensure the check takes place).

.]:A 'J e o_._bA,5.UrQ_ ions_ and Con.straints

In the above analyses, "assumptions" are constraints on the PMS
environment (e.g. external activities). They could be recorded as
attributes or annotations in the domain model. "Constraints"

above refers to solution architecture constraints; they thus form
*..-" part of the solution architec+ure. !t Is ..r.c'cnt to have the
4-' Solution architecture share the same domain model with Goals and." *.

Requirements, and thus such constraints can be recorded asattributes or annotations in the PMS part of the domain model.

Several tools support prototyping. Prototyping addresses the

question of whether PMS Interface, functionality, and performance
requirements are correct (appropriately reflect expected usage and
needs). For example, the requirements engineer would probably

* want Nurse representatives to validate PMS patient-tracking

functionality, and perhaps the ward station display as well. Thus
he might:

(1) Specify an executable prototype of the ward station to aid
validation of the requirements and solution approach to PMS

* patient-tracking.

*)0

-. A,- 0 . . , ., , ,, ,, ,\ -.-

IS " ' ! I

* (2) Prototype the ward station display to aid val i~ation of the
PMS Interface display.

(3) Calculate whether the timing constraints on PMS activities can
be realized; especially the PMS "constraints" documented
during cost and performance analyses.

In the 1990 RET, these activities will be supported by special
tools.

For activity (1), figure 3.3.1-11 Illustrates a portion of a
prototype definition the requirements engineer might construct
using the VHLL Prototyping tools. This tool would also assist
activity (3).

The definition of the Ward Station in figure 3.3.1-11 is given as
a dataflow: arcs represent data, and bubbles represent functions.

"V The dataflow is organized as follows:

• : * Each Ward Station activity (e.g. "Set Alarm") is represented as
an independent horizontal dataflow.

* Each Ward Station state (e.g. "Patient Catabase") Is represented
by a vertical grouping of all bubbles that operate on it.

The bubbles in such a grouping cannot execute in parallel.

* Labeled boxes represent reference data: boxes labeled "A"

represent hardware monitor signals, and boxes labeled
represent the patient database. Reference data does not

".. cause activation of bubbles.

.' * Each bubble has associated code. An annotation beneath the

bubble Indicates a bound on execution time; for example
"< 2" means execution takes less than 2 seconds.

The result is a protcotype for activity (1). Ignoring resource
contention, we see that the 5-second constraint on "set alarm",
obtained by the previous performance analysis, can be met if timer
frequency F can be made sufficiently small (e.g. I second
frequency). This assists activity (3).

For activity (2), figure 3.3.1-12 Illustrates the screen portion

of an interface the requirements engineer might construct using an
RPS tool. Asterlsks indicate comments elicited from the nurse
when exercising the Interface. The RPS tools also assist activity

* (3).

Stress scenario

Another RPS tool could be used to construct a canned scenario to

exercise the proposed solution architecture. Part of a scenario
• definition is depicted In figure 3.3.1-13.

*

3

L,.. . :.,. ,, ., .. , :. .- _ ::.. :.-. .. ': .' ." .. '- .'..-

A

. . .-- "-'< ." " ". ."

, : ,_ _ >% ; '7.'
2 .,- .:..'..'...-,'/

.. '.,,......" 'v ;..:.:..,."
."., ,-"..'. :.,'.,..>,,....v.

,.'..' ",. ,' .4... .;.'

.4.. 0

E 0,C c

0,

c co E c

CL

E (E

El CUc'j '

0, 0, f

000

~~co
W. - -

cv

CZ t) 0 V

4.- c 00

W. 0
o &-

CUC

0 00

LAcli
SC

00
4. cc*~ *-~~C C-4 : 8 c.* '-.~

* * * 4 4~~ ..- CD LE* E- E. ~ , - ~ J ~ '4 .~'

'~p' * . ~ . P

0D

a C

*L CC -@ =) a) >,~ -L 4

E C/ C C

E E cc-E /
z E

0LuU CV) LU C cc

crc

I- C
cI CcE N ccL

QCt 2 05

0 0 0 C
a: -- cc U

- Q. ~ ~ E 0
4) ZE ... E -z co a

t =) Z) E

Z < > Z

0.

I.- Z l)HLt
I-CD CLg

Cl0)
0- 0 a. 0

E. 0 (0 x CDe

0 CLW

*u C 0 U

> j
S3 ja ,

CC 1
=c ~8 reEzI

z 0

32

0Y

Scnai PM -.- V' ,rww ,'w'e VYU--tWXUW

Scenrie Caeviausf

Even tet s St iu ni A tvities

12 2 patients in 12 gn unsafe12 Dtc
Intensive Care vital usf

go unsafe signs

15 Nurse
15 2patients in alarm 1 5 PassesI

S.-."Fair-or-better" patient
request nurse 1 5 Nurse request
assistancealr

15 Passes
patientI
request

15 Set
alarm

*15 Set
alarm

Figure 3.3.1-13 PMVS Stress Scenario - Excerpt.

0~~ 33I

1%N

40

0

%' In figure 3.3.1-13, all times are In seconds after the scenario
start. In the scenario, two hardware monitors detect unsafe vital
signs at 12 seconds. Both take 3 seconds to signal an unsafe
condition to the Ward Station. Thus at 15 seconds, the Ward
Station must deal simultaneously with two emergency notifica'ions
and two Fair-or-better patients' requests for nurse assistance.

Analyses results

The primary result of these analyses is a determination of the
soundness of the solution approach.

If fundamentally wrong, a new solution approach must be attempted,
or the requirements revised (which might require extensive

'.- discussions (both consultation and negotiation) with mission
users).

Otherwise, the acditional assumptions, constraints, and
modifications revealed during the analyses must be added to the

* Requirements and Solution architecture. Often such
additions/modifications will be in the form of added/modified
attributes and annotations to their shared domain model (i.e. the
version(s) associated with the solution approach).

In our scenario, we assume ideal results of our tool-supported
analyses and that no further revisions and analyses are required.
However, it is appropriate to Include some of the results of these
analyses into the Final Requirements and Solution Architecture
documentation ("final" as far as the PET exercise is concerned).

*.; For example: (1) documentation of all prototyping exercises

--.. (objectives, requirements interpretation, design, solution
analyses, exercises against scenarios, and results), (2) screen
mockups (e.g. figure 3.3.1-12), and (3) stress scenarios for later
incorporation into documentation on acceptance and validation
testing.

Figure 3.3.1-14 gives an excerpt of the final Requirements and
Solution architecture, indicating the changes that need to be made
as a result of the new assumptions and constraints revealed during
analyses.

.. ~The reguirements engineer's conclusions on the RET exercIse.

What might the requirements engineer conclude from the RET
* exercise?

" Original goals conflicted, namely low operational cost
vs. rapid doctor notification.

' A compromise, achieved thru moderating the rapid doctor

* notification goal, but not the low cost goal, led to an
acceptable set of requirements.

.-p -* - --- ." ."." " " . . . -- . . • .-. - , w . . % . .~ ,r %- v- . ,
0 34". .". ."".". ". ".->"r. ". '.. . ,' -.. '""'' -.- '" - - " . VJ . r"."; ", ; ?¢£ ;' .'-&Y,£ %Kw~)

RIIE I TS x SLUTI CN DC AIN M2DFl

(1) VIEW N NJRSE

ArTiviTrF i NS DOCTOR

AgigLrE DURATION = 10 SECONDS

AcTIVi MAKES ROUNDS ON PATIENT

A miguTa FREQUENCY = 2 HOURS

DURATION = 2 MINUTES
15 MINUTES ADVANCE WARNING SUFFICIENT TO ENSURE CHECK

AcTIVITY DETECTS UNSAFENESS

ATTRIBUTE DURATION = 2 MINUTES

• LAVERAGE LOADED WAGE = $_5/OUR.

(2) VIEWOIN PATIENT

AcIiviT GIVES I-EALTH SIGNS

AT1BLr DURATION = 1 MINUTE

LET I = AVERAGE # OF INTENSIVE CARE PATIENTS PER DAY,

F = AVERAGE # OF FAIR-OR-BETTER PATIENTS PER DAY,

TH-EN F > 5.3*1I

,,_R IRaIFNTS ON MS AcTIVITIES

(1) JYn SET ALAR

ATTsiBt DURATION =5 SECO)NDS

(2) Aivi.f PRowPT FOR ROUNwS

* Ang i w FREQUENCY = 2 HORS
ISSUES THE PROMPT 15 MI NUrES BEFORE PATIENT MUST NEXT BE CHECKE ON A RMW

FIGURE 3.3.1-14 FINAL REQUIREMAENTS & SOLUTION ARCHITECTURE - ONLY INEw OAHES SNw.

35

0

.- ur-r. rrrjr~r-sr~wsrr~rrj--r~-u~rJ-n~-~7rr, warV t. r! U NWV V WV ruWisJ rdW, uw~ wwnunn, 9~

" PMS functionality and performance requirements were

defined and validated.

" A feasible solution approach was defined.Vt
It is Important to the RET that these conclusions be carefully
documented and linked to the Engineering Context Description.
These will aid determination of the effectiveness of RET tools and
techniques.

3.3.2 1995 Scenario

The 1995 scenaric illustrates these technologies/capabilities:

* A single language for expressing Goals, Requirements and

Sclution architectures, with these capabilities:

Shared Domain Model - expressions such as goals,
requirements, and solutions can all reference the
domain model In order to facilitate their
statement.

p.

Formal Interpretation of Goals and Requirements as
predicates against:

Solutions - e.g. cost analysis
Behavior generated by executing the Solution

against scenario(s)).

* Multiple levels of abstraction - there must be a capability

of tracking refinements across levels.

* Incremental evolution of requirements.

* Automated generation of scenario - generated from a mission
user's outline of the desired behavior.

0 To summarize, the major theme of the 1995 scenario is that the use
of a single formal language permits significant automation of many
activities (e.g. cost analysis, comparison of requirements to
generated behaviors, scenario generation).

Warning: It is difficult to predict what notations might be
* employed in 1995. Thus the 1995 scenario freely uses a formal

English-like notation to convey to the reader what is being
expressed - but not how it might be expressed. It is doubtful
that 1995 technolcgy could support such a notation.

Recalling figure 3.3-1 (minus the third wish), we begin the 1995
scenario. As In the 1990 scenario, the hypothetical RET user Is
called a "requirements engineer".

I. 36

W,~~~~~~~~. P
...

.. %- , .

I

Deriving Goals

From user Interviews and existing documentation, the requirements
engineer creates a domain model of the operational environment of
the target system (PMS). In 1995, creation of high-fidelity
models will be possible. Figure 3.3.2-1 gives only a partial
description, illustrating what such a domain model might be like.
In the requirements engineering process model, such a domain model
Is part of (or referenced by) the goals description.

Figure 3.3.2-2 illustrates the goals. The objective of the
requirements engineering exercise is to analyze the trade-off
between performance and cost wishes. These wishes have now been
formally stated as goals. The goals reference information C.
contained In the domain model.

The first goal of figure 3.3.2-2 is really two goals: a logical
goal that some doctor be notified and a performance goal that such
notification be Immediate (the meaning given to "whenever"). To
refine the logical goal In order to say which doctor, we need
terrinolcgy (etc.) that would come from a better domain model of
PMS context. Figure 3.3.2-3 illustrates the resulting refined
model and refined goal. Figures 3.3.2-1 and 3.3.2-2 represent a
high level of abstraction. Figure 3.3.2-3 represents a deeper
level of abstraction and better fidelity. By 1995, language V
mechanisms will exist that permit stating such refinements
exp!icitly (incremental modification) and there will be automatic
checks for consistency.

To determine feasibility, the requirerrents engineer will now treat

the goals as preliminary requirements and consider what kinds of
solutions are available to him.

Der~inyg a Cardite Sol ution Arj.ture. i.e._t,_LI _L -n

The requirements engineer needs to consider how to build a system
that will satisfy the requirements.

Suitable resources (hardware, software, or people) must be
Identified. For example, consider a "Hardware monitor", figure
3.3.2-4.

The domain model must be extended to Include such a resource and

constraints on how It might be used so that formal solutions can
be expressed. For example, see figure 3.3.2-5, which Illustrates
how the Hardware monitor is brought into the domain model by
extending the latter.

Now the requirements engineer can state the solution. In our i
example, every patient is hooked to a hardware monitor which is
then hooked to his doctor (figure 3.3.2-6).

37 i
'4)JJ,. -- . ','.'.',. , .. ''.'." w -~ ,j V= '" " ' ," O%

-
%

, _

HARDWARE MONITOR ja A DEVICE;
HOSPITAL TYPE QE INSTITUTION;

PATIENT TYPE OE PERSON,

ADMITTED-TO HOSPITAL;

DOCTOR z.E Lf EMPLOYEE,

WORKS-FOR HOSPITAL;

FIGURE 3.3.2-1 DOMAIN MODEL

* HNEEER UNSAFE (5SO PATIENT),

WARN-DOCTOR (SOMEc DOCTOR, THAI PATIENT);

* COST <$100/PATIENT/DAY

J.

FIGURE 3.3.2-2 GOALS

HOSPITAL EAS A SET OF WARDS;
PATIENTS Aa ASSIGED IQ A PARTICULAR WARD;

EAU WARD A JAS A DOCTOR ON-DUTY;

EM3 ANY PATIENT THAI NEEDS A DOCTOR,
USE TEE DOCTOR THAI .I ON-DUTY IN TEE PATIENT'S

WARD.

S FIGURE 3.3.2-3 REFINED MODEL AND GOALS

38

HARDWARE MONITOR iU A DEVICE;

EVERY 15 SECONDS, IT CHECKS I?..E VITAL SIGNS QF A SINGLE
PATIENT;

J IT ISSUES AN ALARM LF THE PATIENT IS UNSAFE;

,-0- T j $500/PATIENT/DAY;

FIGURE 3.3.2-4 A RESOURCE

PATIENT HLAS VITAL SIGNS;

HARDWARE-MONITOR SAMPLES VITAL SIGNS;

HARDWARE-MONITOR DETELMINS WHETHER PATIENT ii UNSAFE;

C HARDWARE-MONITOR ALARM IQ DOCTOR, USE TO NOTIFY

FIGURE 3.3,2-5 EXTENDING THE DOMAIN MODEL
TO INCLUDE THE RESOURCE.

EMR EACH PATIENT:

HOOK PATIENT TU HARDWARE MONITOR

ESO HARDWARE-MONITOR ALARM j DOCTOR

4FIGURE 3.3.2-6 A CANDIDATE SOLUTION-

COST = $500/PATIENT/DAY

COST EXCEEDS GOAL

FIGURE 3.3.2-7 AUTOMATIC CALCULATION OF
SOLUTION COST AND EVALUATION
AGAINST GOALS AND

NC REQUIREMENTS.

39

-.- ' C r -. - - r f,.,r rzil

0I

Forral analysis of the Candidate Solution Architectur

Extending the domain model to formally Include the resource and
constraints (as Indicated above) facilitates automatic formal
analyses of solutions. There are at least two types of analyses
that can be done: (1) detection of Illegal or Incomplete
solutions, etc., and (2) determinallon of operational paraneters
such as cost, downtime, etc. Formal interpretation of
Goals/Requirements as predicates against the results of type 2
analyses lead to an automatic determination of whether the
solution is satisfactory in certain ways.

For our PMS example, consider a tool or analysis that
automatically calculates operational cost and formally interprets
Goals/Requirements as predicates against that cost. Figure 3.3.2-
7 illustrates what happens. The resulting operational cost does
not satisfy the cost goal (figure 3.3.2-2) and the requ;rements
engineer is so informed.

(F.rnal inalysi nue_) SLne. e_.iy n alyIs

The fcllowing will be a 1995 strategy to test a solution for
satisfactory performance. It will be largely automated (relative
to what can be done even in 1990): (1) create Scenarios, (2)
formally interpret Goals/Requirements as predicates, and apply the
predicates against the behavior elicited when executing the
solution on the scenarios, and (3) note which Goals/Requirements
are not satisfied. In the 1995 RET, (2) and (3) will be
ccmpletely automatic; (1) will be significantly automatic.

Simple scenarios can be automatically generated. In our PMS
example, if the requirements engineer requests "Build scenario for
a patient", two scenarios would be generated, one for a patient
who at some point becomes "unsafe" (see figure 3.3.2-8) and one
for an always safe patient. In the general case of scenario
generation, the requirements engineer, by indicating key events,
will control the combinatorial explosion of scenarios that might
be generated from considering all cases. For example, "Build a

* patient scenario which Includes 'patient becomes unsafe'".

In our PMS example, the running of the solution (figure 3.3.2-6)
against the scenario (figure 3.3.2-8) produces behavior that can

1 Abe tested against the predicates resulting from a formal
Interpretation of the goals (figures 3.3.2-2, 3), yielding the
conclusions Indicated In figure 3.3.2-9. Recall that the first
goal in figure 3.3.2-2 is Interpreted as both a logical goal (that
notification takes place) and a performance goal (notification
must be immediate). Figure 3.3.2-9 says that the notification
goal was satisfied, but not the performance goal, because the
hardware monitor is a sampling device (figure 3.3.2-4).

% .

* PATIENT ADMITTED TO HOSPITAL;

PATIENT ASSIGNED TO WARD;

* PATIENT HOOKED TO HARDWARE MONITOR;

DOCTOR HOOKED TO ALARM;

* HARDWARE MONITOR SAMPLES PATIENT VITAL SIGNS;

PATIENT UNSAFE:
ALARM ISSUED;

ON-DUTY DOCTOR WARNED;

FIGURE 3.3,2-8 GENERATION OF A SCENARIO
DEPICTING AN UNSAFE PATIENT.

GOAL OF NOTIFICATION WHEN PATIENT UNSAFE

==> SATISFIED

GOAL OF IMMEDIATE NOTIFICATION WHEN PATIENT UNSAFE

==> NOT SATISFIED

FIGURE 3.3,2-9 AUTOMATIC ANALYSIS OF THE
RESULT OF EXECUTING THE
SOLUTION AGAINST THE
SCENAR I0.

I41

I

4
A.

IV

The conclusion of this formal analysis Is that the solution
satisfies the notification goal but not the performance or cost
goals. Thus another solution approach must be found that makes
these goals realizable, or the goals must be revised.

DerivIng Requirements

We assume that further Interviews etc. reveal that significant
delays In notifying the doctor are acceptable if the patient Is
noncritical, so the goals can be revised. Such patients' safeness
can be monitored by a nurse on rounds. The requirements engineer
thus extends the domain model by Introducing the concepts of
Intensive care and nurse, and derives two performance requirements
as Indicated In figure 3.3.2-10. Note that the performance
requirement for Intensive care patients has been relaxed to equal
the sampling rate of the hardware monitor.

Rev! ing SolLtion architecture

VNext, the requirements engineer attempts to use the nurses to find
* a sclution that makes the requirements feasible, including cost.

Parts of such an attempt, solution and extended domain mcdel, are
indicated in figure 3.3.2-11. The nurse not only does rounds, but
also monitors the hardware alarm.

As with the previous solution (figure 3.3.2-6), the fcllowing
analysis is done on the solution: cost analysis and a check for
satisfiability with the requirements through execution against
scenarios. We assume the cost analysis reveals that the current
solution satisfies the < $100/patient goal. We also a,. ume that
the satisfiabilIty check reveals that introduction of a nurse
creates a delay for the Intensive care patient case (because there
is nc longer a direct connection from alarm to doctor). This
Smeans we need to find another solution that will make the
requirements feasible, or revise the requirements.

Revised Requirements (Demonstration of Incremental Modif Ication)

We assume we revise the requirements. Figure 3.3.2-12 shows the
explanation that might be given for the modification to the
Intensive care 15-second notification requirement.

"" .

% N OA n

ALL PATIENTS IN INTENSIVE CARE HAVE HARDWARE MONITORS;

NOTIFICATION OCCURS WITHIN 15 SECONDS;

ALL OTHER PATIENTS ARE MONITORED BY A NURSE ON ROUNDS;

NOTIFICATION OCCURS WITHIN 2 HOURS;

FIGURE 3.3.2-10 REQUIREMENTS

NURSE TYP OF. EMPLOYEE,

WORKS-FOR HOSPITAL;

NURSE MONITORS HARDWARE ALARM;

NURSE PHONES ON-DUTY DOCTOR IE ALARM .LS AC.JAE,;

FIGURE 3.3.2-11 CANDIDATE SOLUTION.

! TIME OF NOTIFICATION IS RELAXED TO ALLOW TIME FOR NURSE

TO PHONE DOCTOR;

* FIGURE 3.3.2-12 REVISED REQUIREMENTS -

EXPLANATION OF MODIFICATION.

-ry

% J)..

S•

kb%

4.0 PANEL RESEARCH AND DEVELOPMENT RECOM-1ENDATIONS

CI iectives cf the RET R&D Program

Below, we summarize, by source, the RET R&D program objectives:

* 1990 and 1995 Scenarios - the R&D program should provide
tools and methods that work together In the ways Illustrated
by the scenarios (section 3.3). The tools and methods
should have the capabilities Illustrated by the scenarios.

* Requirements Engineering Process Model - The R&D program

should provide tools and methods to support process modelactivities (sections 3.1 and 3.2; detail is found in

appendix C).

* RADC's plans and goals - The R&D program should help fulfill

these goals for the RET (section 2): (1) The RET should
support evaluation of the effectiveness of tools and
methods. (2) The RET should make a full range of

* requirements engineering capabilities accessible to Air
Force mission users and acquisition engineers. (3) The RET
should host the currently-contracted tools, and by 1990,
they should be integrated.

* Long-range architecture for the RET - The R&D program should
realize the panel's vision of an RET architecture featuring
(appendix D): (1) a direct manipulation-style user
interface to all objects, (2) a database serving as the
common repository for all requirements-related Information,
and (3) a formal language for expression of goals,
requirements, and solution architectures.

In the Icng term, all RET tools and methods should be
structured to fit this architecture.

References are made to these objectives in the sections that
follow. Section 4.1 summarizes the panel's strategy for obtaining

* an Integrated RET. Section 4.2 discusses an R&D program
consisting of two tracks: (1) an Evolutionary Track for
developing tools and methods that in the near term provide the
best payoff in better requirements; and (2) a Formal Language
Track for exploring the higher risk/payoff implications of a

%J"_ formal requirements language. Section 4.3 discusses the panel's
recommendation on the relative allocation of R&D resources between

0. these two R&D tracks, and the relative prioritization of issues
within each track.

4.1 Near-term Intogration of F-.E.,

To address RADC's objective of integrating the currently-
contracted tools, the panel recommends that integration be

0-4

LW.j

achieved by having the tools work off a common database and be
accessea through a common user interface. This level of
Integration means that: (1) tools can share data, and (2) the RET
user is given uniform access to tools and their data and is free
to invoke tool functions in an order natural to his/her
application.

This approach will produce an early version of the long-range RET
arch itecture.

An Integrated RET will also help in the evaluation of tools; for
example, by providing the basis for a broader range of controi
experiments.

-p d.

To significantly reduce the amount of effort required to achieve
Integration, the panel recommends a near-term strategy of
standards and cooperation between the RADC tool contractors. The

N integration strategy is further discussed in appendix D.

To provide RET users some of the benefits of integration in the
very near term, the panel reccmmends a loose coupling of the

0 currertly-contracted tools. The loose coupling plan is also
discussed in appendix D.

4.2 tecu iremet En.pireering Tjgd (PET) Rep.rh ardD-yelpr,,nt"

4.2.1 Two-Track Pr-og r-w

To meet the objectives stated at the tegInning of section 4, the
panel identified two themes on which RET R&D program efforts
should focus: (1) providing near-term support for these
activities: prctotyping, requirements analysis, and evaluation of
tcols; and (2) a formal treatment of requirements. The R&D
program consists of two tracks to deal with these two themes.
Figure 4.2.1-1 depicts the two themes and their relationships.
Below, we expand on these themes and their associated activities
and then discuss the figure.

Theme of the Evolutionary Trank

Both the 1990 scenario and the process model characterization
demonstrate the Importance of prototyping and the role of

, scenarios In driving prototypes. (For examples, refer to figures
tl 3.3.1-11, 3.3.1-12, and 3.3.1-13.) Prototyping gives a mission

user "visibility" into specifications of system and software
requirements by helping the mission user determine whether his/her 6

needs are being addressed. Thus the panel recommends that the
"creation of prototypes and scenarios, and analysis of results"
activity be an early focus of the RET R&D program.

I% - " ," ." -" ." ," ." " -" "" ". ". -" " -" ." ." ." ." ." " '- ." "." --""." '-"-" ." .'-" "- "-""- '/ ". " "-""." -," -" "" "" - "/ ."- ' ',, .' " 1:'
', " •"p , ' % • % % - , " . " , ". " . " . " % " , % % % ' ,, ' , % '- % '"% . ,
'.p - -..- '-'-, -.'.'-''j ' ...,, -'-'-.. -- ,. < , .. o'-: . .. ',-". : ".. - ''' , , > K :

LnTool Formal
Pr9,totyping Analysis Evaluation Language

~ *.----- -------- S

LU Wj

C,,:

Cl, LU<-

<A 0
D/ < <I-Z

uJ U 00
0L z 0hr w*<L

a: 0 < /
< LLU-I z l6L0 (0 Z

LjL<
zWu-

Z CC, <

LU 0 co !
Zw C.. CO <~< < < 0

cr< cc

CC 01

C,0 0zr~Ih-

z -
0

46I
0

l u

t.0 .Idd LU C - r

Some of the ob lect iyes stated In section 4 Imply the need fcr !

tools and methods that address the non-solution-architectureu
phases of requirements engineering; specifically, goals and
requirements synthesis and analysis. Such tools and methods would
help mission users state their needs and decisions at the mission .
level. Both scenarios demonstrate the need for such capabillities. :
Such a need must be satisfied In the near term. Thus, the panel

L-r. recommends that the "analysis on requirements" activity be another
early focus of the RET R&D program.

Evaluating the effectiveness of RET tools and methods requires
the capabillity to track their use and collect results. An
integrated RET would help control Independent parameters (e.g.
style of presentation, format of input data), a prerequisite for
parallel experiments. Thus the panel recommends that the
"measurement of tools in an integrated RET"1 activity also be an '
early focus of the RET R&D program. .

To successfully provide near-term support for the three activities '
above requires a low risk and early payoff strategy. In the long
terr, the resulting RET capabilities would be enhanced/refined.
The panel organized an "Evolutionary Track" of R&D efforts to do ;
Thisc. The Evolutionary track would provid~e the capabilities
illustrated ;n the 1990 scenario and support most process model
activities. The Evolutionary Track is described In section 4.2.2.

T_e Ferma Lanu-eTsc-

The panel recognized early on that" representing requirem ents in a
formal language was a high-payoff approach, but such an approach
would fail to provide near-termn Solutions to the R&D program
objectives. Nevertheless, such an approach would address these _objectives not being addressed in the other track: (n) helpautoate requirements traceability and assessment of requirements

coverage, and (2) provide a language for representingrequirements, solution architectures, and goals; a major element
of the long-range Rsi architecture. The panel thus defined awol

"Formal Language Track" whose focus would be to provide such a

t'@, formal language.-

The Formal Language Track would also provide the capabilities .
Sllustrated in the 1995 scenario and support most process model

tnactivitiesnhe

Figure 4.2.1- depicts 1990 and 1995 goals of the two themes:

(rototyping"), analysis on requirements ("Analysis"),
measurement of tools in an Integrated RET ("Tool Evaluation"), ande(g
formal language. Their dependencies wrth each other and with the
curremtly-contracted tools are indicated by the arcs. asba

eal focu ofteRTR&rrg~
Toscesulypoie7ertr supr-o htreatvte

01, .err. the- rsligETcpblte.ol be;enhanced/refined.

Analyst tool capabilities are the basis for the 1990 Analysis
capabilities for structuring requirements and the domain model.
Domain models provide necessary information for building scenarios
and simulations, thus the vertical dependency with 1990
Prototyping goals. 1990 Prototyping goals are also dependent on
the prototyping and scenario generation capabilities provided
respectively by the VHLL and RPS tools.

1995 Prototyping goals extend 1990 Prototyping capabilities by
providing capabilities for sensitivity analysis on requirements.
1995 Analysis goals extend 1990 Analysis capabilities by providing
capabilities for dynamic analysis and quality critiquing. Various
Interactions are possible between 1995 analysis tools for these
two activities, hence the double-headed vertical arrow.

The 1990 Tool Evaluation standards will be Influenced by the
', standards adopted by developers of the currently-contracted tools.

These 1990 standards will In turn guide all subsequent RET tool
development. The 1995 Tool Evaluation goal is to integrate these
new Analysis, Prototyping, and Formal Language capabilities Into
the instrumented RET to facilitate their evaluation.

The 1990 Formal Language goals are independent of 1990 Analysis
and Prctotyping efforts and the currently-contracted tools. The
1995 Formal Language goals include Incorporating abstracticn
mechanisms into the language and interpreting classes of
scenarios. These capabilities must also be integrated into the
RET.

From the perspective of milestones, the 1995 RET %ill be a mature
experimental facility, hosting matured analysis, prototyping,
formal language, and evaluation capabilities. The 1990 RET will
be a prototype of the 1995 RET, still integrated and instrumented
for evaluation, but featuring only a few mature tools, in
particular, the currently-contracted tools.

4.2.2 EvoluJtionarTrac

* As explained above, the theme of the Evolutionary Track focuses on
three activities. Below, in section 4.2.2.1, we consider these

A activities In turn, Indicating, by R&D roadmap, the panel's
strategy of achieving the theme's 1990 and 1995 goals. In section
4.2.2.2, we consider the R&D Issues that constitute the

Evolutionary Track.

The linkage between section 4.2.2.2 R&D issues and the R&D effort
boxes of the roadmaps in section 4.2.2.1 is Indicated by a code(s)
in the lower right-hand corner of most boxes in the roadmaps.
This code(s) indicates the R&D Issues of which the R&D effort is a
part. Below, we Indicate the correspondence between R&D Issue
names and codes:

........-..-...............-...-.............-.....-............ ... -. -. .'

: . . .- . - % ° %- - , % % , . .' .Ak. ~. % % •- %

CfY': Domain Models and Information
RSA: Requirements - Static Analysis
RA: Requirements Analysis Methodology

.r DA: Dynamic Analysis
SG: Scenario Generation Support & Scenario Coverage

Analysis
AR: Scenario Execution and Analysis of Results
EC: Estimation of Cost, Risk, Time In System Development;

Performance & Execution Costs Analysis
RE: Requirements Evaluation
TE: Testbed Effectiveness
UI: User Interface
DB: Database
ETI: Evolutionary Testbed Integration

4.2.2.1 Objectives And Roadmas

LRequ i rements Analysis

The goal of Requirements Analysis is to extend end automate
capabilities in the analysis of requirements. Analyses include
analysis for consistency and completeness, analysis of
interrelationships among the requirements and with domain models

" and scenarios, and quality assessment: detection of redundancy,
determination of understandability and modifiability.

The parts of the 1990 scenario addressed incl~de:

Capabilities for partially formal characterizations of: the
problem domain (incluting resource models), functional

requirements, scenarios, and some nonfunctional
requirements. Also, static analysis capabilities on these.

Capabilities for expressing goals.

Capabilities logically equivalent to those indicated in
figures 3.3.1-1 through 3.3.1-10, the Scenario Event Table
In figure 3.3.1-13, and figure 3.3.1-14.

Figure 4.2.2.1-1 indicates the panel's strategy of meeting the
goal of this activity. The roadmap Indicates: (1) the
formalisms, tools, methods, etc. that support the above-mentioned
(and longer range) capabilities, (2) the corresponding R&D efforts

* that will produce these formalisms, tools, methods, etc., and (3)
the dependencies between these.

V,

,"-...

1,"

- %

.. • "9

Al U K W UWNW Wl'U)W

00

0

C) 0

a:0

<< I Cz~ Z-
0 U0
-J 5.

p.0. I.J-C/z-o cc w<-c

C.)cZ .

< Dr
U00

1;'/
c-

000 Ltj

0)

cc>z

0ia

00
V.-)

SWCO
V..;

*1~ 53
V.z

% %,

0L

* - - -. ~ ,...W - ar ~ V '* 'Vtt t'ftV frwU-.,,~r ,'t- -y -r -r~r - -r -la 1 -v - --tWnr ~f r f ,

Prctotyping

The goal of Prototyping is to extend and automate capabilities in
the creation of prototypes and scenarios for experiments, and
analysis of experimental results. Related issues include:
creation of support simulations, coverage analysis, and the

presentation of experiment-generated data.

The parts of the 1990 scenario addressed Include:

Capabilities for partially formal characterizations of:
scenarios and their interfaces (e.g. inputs) to prototypes.

Capabilities for building executable models, performance
models, and scenarios. Capabilities for exercising
prototypes against scenarios. These capabilities provide an
essential basis for evaluating feasibility and trade-offs.

Capabilities logically equivalent to those indicated in
figures 3.3.1-3, 3.3.1-9, and 3.3.1-11 through 3.3.1-13.
0I

Ficure 4.2.2.1-2 indicates the panel's strategy of meeting this
activity's goal. (In the figure, two boxes have wavy left edges.
Such a left edge is used to indicate that the true position of the
edge lies furTher to the left but can't be shown without creating
an overlap or impacting the figure's compactness. The true
position can be found by referencing the corresponding R&D Issues
in Appendix E.)

The goal cf Tool Evaluation is to provide capabilities for
measuring the effectiveness of RET tools in terms of improvements

.5 to processes (e.g. productivity) and products (e.g. quality). A
related goal is to provide an integrated RET in which the best
features of each tool can be applied to the same set of

ft requirements.

The parts of the 1990 scenario relevant to tool evaluation
include:

a' Establishing RET exercise objectives, documenting results of %

,d the RET exercise. N

The tool evaluation context might appear In the Engineering
4. Context Description, establishing objectives for and
a constraining the RET exercise for the RET purpose of tool
,a' eva l uat ion.

Figure 4.2.2.1-3 indicates the panel's strategy of meeting this
* activity's goal.

analysis creation when to prototype
-- ---- ;---. ------ r---- --------

Cc z

U) a.a

zL M
q C,,

W 0 C0

- 0E0C 0aUzU

g3 < 0 t
-- aLU

z LL

0 <IUa < 0L
Er IO a n 0 EC P (

0 9 U D<U
a C3 a.A0 U>

00

-~ ~~~~ F z I a0 p~6/ * , , 1--

< LLJ

Li,

supporting deo n
research development

.-.-------.----- .---------- ------------------

w
, U.

C) C/) _ " LC/) ~C cc aW

->-) Z-

z LuL

* <
Q<

- L. (z - i

-J zJ
0 <-

-O ,cM

w I

5I a: 00,- ,,, < <~ q:0S

-. 00 :)

< x 0W -j
*q 0< Q, EL 0

C) I-U >
CJ

cr <
IL

9 5
-3 Lb

ccl _________.________M__

U.1

53 *5

%55

4.2.2.2 Research and Development Jssues

The Evolutionary Track consists of both research and development
issues. Appendix E gives detailed characterizations of all
Evolutionary Track issues. Below, we provide a summary of the
research issues followed by a summary of the development Issues.

Characterization of Evolutionary Track Research Issues

The research issues generally correspond to activities In the
requirements engineering process model. This is because the panel
used the process model to help Identify the R&D Issues that would
help realize desired RET capabilities.

The Evolutionary Track R&D Issues are considered here In an order
roughly corresponding to a top-down walk-through of the process
model.
Each research Issue is characterized in terms of: where It fits
in the process model, what are the research objectives, what is

the recommended solution approach, and recommendations regarding
funding priority based on assessed risk and payoff. The funding
priority scheme assigns each issue a pricrity of High, Medium-
high, Medium, Medium-low, or Low. A summary of the prioritization
is given in section 4.2.4.1.

GOALS AND REQUIREVENTS SYNTHESIS

Where issue fits in p ess model: In transforming wish lists
"" into goals and transforming goals Into requirements.

'esearch Obiective.s: Provide capabilities for: (1) expressing
b.' and viewing goals and requirements and (2) expressing goals and

requirements in one or more domaln-specific languages and
integrating the different expressions.

Solution Approach: Develop mechanisms for syntax-directed
[0 editing, view management, and for supporting reuse. Enhance the

Analyst to Interface and utilize these mechanisms.

Recommendation: Funding priority: Medium-low. To some extent
solution mechanisms can be provided by database technology. These
should be brought Into the RET; In which case the probability of
success Is high, and no specific research funding is required.

DOMAIN MODELS AND INFOF44ATION

'"Where It fits in proess model.: Domain Information is essential
*e to development of goals, requirements, and solution architectures.

L %LOU

l r - - - a: , -.. , Sr ,n Sr= - Sn, Sr a" u ,=-u.-,-' wrwww-u wrww wM w u ww w n -. -: -:.. .

Reerch Objectives: Provide capabilities to collect and organize
domain Information and make it accessible to tools and
requirements engineers.

Solution Approach: Select and develop mechanisms for capturing
and structuring domain Information, e.g. knowledge acquisition and
domain-specific languages/interfaces. Build Interfaces for tools
to exploit domain information. Investigate role for expert
systems that use domain Information to help elicit and validate
requirements.

Recommendation: Funding priority: Medium-high. Risk: low to
moderate. This research offers much promise, but many of the
capabilities it attempts to provide will remain manual.

REQUIREMENTS - STATIC ANALYSIS

Where it fits In process model: Static analysis on requirements.

Research Obiectives: Provide consistency and completeness
* checking capabilities.

* Solution Approach: Define a controlled (restricted vocabulary)
natural language for the expression of requirements. Develop
checkers that take such requirement expressions as input and
determine their consistency, completeness, etc. with respect to
meta-knowledge bases.

Recrmer3tl"c: Funding priority: Medium. Risk: low. This

research has some promise, but the approach is fairly independent
• . cf other R&D efforts.

REQUI REMENTS ANALYS I S METHODOLOGY

Where it fits In process model: Guides the order in which process
model activities are carried out.

* Research Obiectlve: Develop a methodology spanning all
requirements engineering activities that will provide guidance In
the use of new requirements analysis capabilities.

Solution aproach: Near term: Extend the CORE method Into
solution architecture synthesis and analysis and provide guidance

* In use of RPS and VHLL Prototyping tools. Long term: Select a
then-existing methodology that better meets the research objective

lo based on effectiveness evaluation of existing tools.

Recomendation: Funding priority: Medium-high. Risk: Moderate.
Tools must be evaluated to determine their range of effectiveness.

* This research has much promise.

55

L % Z%- . 4
y_ .

DYNAMIC ANALYSIS

Where It fits in process model: In dynamic analysis and rapid
prototyp Ing.

Research Objectives: Provide the user with an animation-based
capability (I.e. graphically depicting flow of Information and
control) to Investigate the consistency, completeness, and
validity of a set of requirements.

Solution Approach: Enhance prototyping capabilities with: (1) the
ability to run animated exercises of the proposed system, (2) the
ability to graphically browse through requirements
Interrelationships, and (3) a knowledge-based enhancement:
ability to represent and analyze requirements against a known
domain model.

%. Recommendation: Funding priority: Medium-high. This research
% offers much promise at generally low risk. Payoff and risk of

knowledge-based enhancements is not yet clear.

-os SCLUTICN ARCHITECTURE SYNTHESIS

Wherejt fits in prcess model: Design candidate architecture.

Research ob iectives: Develop a design assistant that will help
construct and/or critique a solution architecture.

,.l S j&,% .Ch: Develcp meta-models of design goodness and
enhance prototyping tools with -knowledge base support for creation
of good designs.

. RgC _. r ,.i Funding priority: Low. Risk: high. Wait for
basic results from other investigations Into the "design problem".

SCENARIO GENERATION SUPPORT & SCENARIO COVERAGE ANALYSIS

Where It fits In process model: Rapid Prototyping (building
scenarios that drive prototypes and determine coverage).

Research objectives: Provide the capability to build adaptive

scenarios and support-simulations that drive a prototype. Provide
the capability to determine which parts of the prototype (and
associated requirements) were brought into play during execution.

Solution Approach: Provide a knowledge-based simulation system
% that can Interface and run executable and performance models of

the target system, simulating the interactions between the
scenario and the models. Develop dynamic probes Into a prototype.
Investigate coverage by proving the scenario from the prototype
description.

*"= " w-,

pW"J N'?#'-Ww,, --4" .' , . ,,- . - -.- ,, . . , . - . - ,. ,, . .% % , •,w

Recommendation: Funding priority: High. Risk: low for scenario
generation, higher for coverage. Resulting scenarios should be
able to work with all prototyping tools.

VALIDATION OF PROTOTYPE AND SCENARIOS

Where It fits In process model: Rapid prototyping.

Research ObJectives: Provide the capability to validate the
prototype and scenario for consistency, completeness, and logical
correctness. Provide the capability to validate the results of
executing the prototype against the scenario.

Solution approach: Build knowledge-based syntax and semantics
checker for prototypes and scenarios. Create a library of metered
and validated prototypes that would be used to gauge the accuracy
of the results of a particular prototyping exercise.

Recomiendation: Funding priority: Low. Much of the necessary
groundwork (i.e. reusability, formal expression of prototype and

* scenarios) for validation Is being addressed by other research
* -components of the track. Manual validation methods will continue
.~ to be necessary.

SCENARIO EXECUTION AND ANALYSIS OF RESULTS

Where !t fits in process fLrD=L: Rapid Prototyping.

Research obijective: Provide tools to collect, analyze, and
present the data generated during prototype experiments.

Solution Approach: In the near-term: a database to hold results
and date management facilities to aid human analysis; each
prototyping tool will provide a specialized analysis capability.
In the long-term: knowledge-based aids for evaluation of
prototype sensitivity.

* Recommendation: Funding priority: High. Risk: near-term: low;
long-term: moderate to high. Long-term effort assumes an
Integrated RET In which one scenario can drive multiple models and
results can be correlated.

ESTIMATION OF COST, RISK, TIME IN SYSTEM DEVELOPMENT; PERFORMANCE
& EXECUTION COSTS ANALYSIS

Where It fits In process model: Analysis of performance and
reliability, and development cost, risk.

Research obiectives: Provide metrics-based capabilities for the
estimation of cost, time and performance as a basis for making
trade-offs and doing impact analysis.

~57

%

Solution approach: Provide metrics for cost, time, risk, and
project size, and provide related tools that do the measurement
and analysis. Add metrics for distributed/knowledge-based
systems. Develop tools that do fault-handling analysis and
reliability estimation.

Recompmendation: Funding priority: High. Risk: Moderate.
Metrics are often subjective, thus special attention Is needed.
Research has great promise supporting critical trade-off and
Impact analysis activities.

REQUIREMENTS EVALUATION

Where it fits In process modeLs: Primarily requirements
evaluation and reformulation, but also static analysis, solution
architecture synthesis and prototyping.

Research obiectLves.: Provide capabilities to determine
requlremrents quality and compare alternative sets of requirements

* and solution architectures. Provide an-associated methodology
. that helps focus requirements engineering activities to produce

better estimates of system time, cost, and performance.

Solution approach: Develop a Metric Guided Methodology with:
(1) tools for quality assessment, (2) knowledge-based tools for
acquiring and manipulating knowledge of the system being
developed, (3) support and correlate different design
representation schemes, and (4) combine predictive metrics with
protctyping.

Recommendation: Funding priority: Medium. Risk: Moderate.
There will be difficulties in validating metrics and in the
knowledge-based aspects of the work, but if these difficulties can
be overcome, the payoff will be high.

TESTBED EFFECTIVENESS

Where it fits In process model: It relates to the engineering
P, context description.

Research obiectives: Provide the capability to determine the
effectiveness of new Requirements Engineering Testbed tools and

* techniques.

Solution Approach: Instrument the RET for time/effort and
- resource utilization measurements. Provide basis (metrics,
- prototyplng) for development cost/risk/schedule estimation.

Compare requirements quality before/after application of a tool or
technique.

, ,.

.. ,"

% %

Reconmendation: Funding priority: Medlum-low. Mostly a
development concern. This effort might be Incorporated in the
"Evolutionary Testbed Integration" development issue.

Characterization of Evolutionary Track Development Issues

There are three development Issues: User Interface, Database, and
Evolutionary Testbed Integration. All three Issues form part of
the panel's strategy for: (1) Integrating the RET, and (2)
instrumenting the RET as a basis for tool evaluation. The "User
Interface" and "Database" issues also provide Initial versions of
corresponding elements In the long-range RET architecture.

The development issues are generally given the same kind of
characterizations as were the research issues, except that they
are given a characterization of how they fit in the long-range RET
architecture rather than cf how they fit in the process model.

USER INTERFACE

1 .w It fi ts in RET a-ch tecture: The use of consistent interFces
by all tools eases user access to tool and data. Supports tight
integration of tocls.

Cevelooment objective: All tool developers should be required to
use a consistent approach to end-user communication.

S n AL ch: (1) Establ ish user interface models and
standards to be observed in the develcpment of all tool interfaces
and in the use of run time support packages. (2) Check compliance
with standards by all tool contractors. (3) Evolve standards.

er~M~m.OLon: This effort should be initiated very early in the
R&D program so as to affect all development activities. ,

DATABASE

How It fits In RET architecture: Provide data storage and data
management capabilities to support tight integration of RET tools
via shared data.

Development objectives: Provide viewing/reporting, editing,
classification, and export/import facilities to aid RET users In
accessing and managing large volumes of complex data.

SOILLi.iLDA l: Select a general-purpose DBMS which Is
efficient in the storage of design objects and which provides the
proper facilities. Develop common data object descriptions and
conversion routines so existing tools can share date. Customize
data management facIl ities for RET needs.

...- -",",.;'

6

Recommendation: This is a high-payoff low-risk component of the
RET, and critical to the evolutionary track.

EVOLUTIONARY TESTBED INTEGRATION

How It fits In RET architecture: This effort would support light
Integration of existing tools, allowing the use of key
capabilities of each tool on the same set of requirements.

Development obiectives: Develop an Integrated RET featuring: an -A

A.RET experimentation methodology, a common database and user
interface for tools, and a way of bringing new tools In.

Solution Approach: Identify the degree of tool Interaction and
tracking desired. Assuming the "database" and "user interface"
efforts have progressed, begin modifying the tools. For
tightening the integration, identify which tools should be invoked
by data changes and which should be explicitly invoked by the
user. Develop an RET experimentation methodology.

,-nmdtIJ : This effort is critical to achieving tool
Interaction and also for RET effectiveness assessment. Possibly
incorporate instrumentation capabil ities from "'Testbed 'A,

effectiveness" into this effort.

"A A

Pr

. . ., . .. • . . .-. ° . . - . , , . . • % , , ,

4.2.3 Formal Languaoe Track

As explained in section 4.2.1, the theme of the Formal Language
Track is to provide a formal treatment of requirements. In
section 4.2.3.1, we Indicate, by an R&D roadmap, the panel's

,, strategy of realizing this theme. This roadmap also shows
. dependencies between all R&D Issues of the track.

In section 4.2.3.2, the research issues which constitute the
Formal Language Track are characterized.

4.2.3.1 Objectives and Roadmap

The goal of the formal language track is to provide a formal
treatment for requirements in which automated support can be given
for tracking requirements into specifications and checking for
requirements satisfaction when a specification Is run against
sctnarlos.

* The addressed parts of the 1995 scenario include:

A A ll parts are addressed: formal support will be given to
all illustrated synthesis activities and analysis activities
except for synthesis of goals, for which a methodology will
be provided.

Figure 4.2.3.1-1 indicates the panel's strategy for providing a
formal treatment for requirements. Each box represents a research
issue of the Formal Language Track. (Because of the close

A correspondence between Formal Language Track R&D efforts and R&D
issues, there is no need in the roadmap for a special linkage such
as that employed in the roadmaps of section 4.2.2.1.)

4.2.3.2 Research Issues

The Formal Language Track consists only of the research issues
0 Indicated in figure 4.2.3.1-1. Appendix E gives detailed

characterizations of these Issues. These Issues can be considered
as belonging to one of two types: (1) Issues that directly
contribute to and/or are strongly dependent on a formal
requirements language, and (2) Issues that relate to the broader
requirements engineering context. The latter research issues

* assume the existence of a formal requirements language, but it Is
- -" assumed that their Investigation can be done fairly Independently.

Below, we treat all Issues strongly dependent on the language as
the "Formal Requirements Language" issue. All other issues are

given their own summaries. The style of characterization is
7.-. similar to that used In section 4.2.2.2. Finally, we Identify -

candidate Issues that were rejected for inclusion In the Formal
Language Track.

. , 61

,,.. .,.,.,..,. ,.,. .. ,. .., .., .. ' ,.,.,,_.,.I.- ,> 1 , d,,,.% -%," S

%~
% Nf

w~wwwl~l~u-W-wrvw;w. Munv" xMr

zLA
zwA. i

S,,.I.

% cc

00

0)0

* <

Wz <

0 z M

cc 9- T
a.J 0 t

L- LQz COcc

0 0

oz.-.. Cl, 17L

r00

w
'cc

62

FORMAL REQUIREMENTS LANGUAGE

Where issue fits in process model: This Issue will provide a
common formal language for goals, requirements, and solution
architectures. Thus analysis on each of these and
synthesis/analysis between each of these can be given formal
automated support. This would address most "transform" and
"analysis" activities of the process model.

Research Objectives: Identified as Individual research issues In
figure 4.2.3.1-1: requirements integrated Into specification
language, formal interpretation of requirements against behavior,
goal coverage analysis, multiple levels of abstraction, and an
incremental requirements language.

Solution Approach: Expand existing formal specification language
to include formal requirements statements. Share a common domain
model and define requirements as predicates against behavior of
specification. Formally execute specification to generate
behavior against which to test requirements predicates. Include

:.7. goals as requirements which can be further refined. Provide
support for multiple levels of abstraction in stating requirements
and specifications and mapping between them. Provide support for
evolving requirements statements on basis of feedback from
evaluation tools.

Recommendation: Funding priority: High. Risk: low for
V. integrated language; high for reasoning and analysis tools.

Formal language approach to requirements Is highly recommended as
a complement to the Evolutionary Track. It Is higher risk and
higher payoff and that payoff occurs later than in the
Evolutionary Track. But It lays the foundation for earller and
more reliable detection of requirements problems and their use as
a real design envelope.

Vp.

METHODOLOGY FOR FORMAL REQUIREMENTS SYNTHESIS

Where Issue fits in process model: Guides the synthesis of goals
and requirements.

Research Objectives: Provide guidance for mission users and
acquisition engineers In creating formal requirements.

Solution Aporoach: Extend structured specification methodologies
to requirements and their formal expression. Extend the

methodology to expression of goals and determining how to revise
" and refine them.
0 e mmnd.tLQoLn: Funding priority: Medium-high. Risk: moderate

to high. This research offers much promise in that it aids

getting conceptualizations Into formalisms, thereby making Formal

* 63

~'%~V%

Vl

Language Track facilities accessible to a broader range of users,
but success is uncertain.

SCENARIO GENERATION AND COVERAGE

Where Issue fits In process model: In rapid prototyping:
building scenarios that drive prototypes and by examining the
generated behavior, determining whether the requirements are
correct and complete. Requirements evaluation and reformulation:
issue also addresses support for determining whether the
requirements are satisfied under a class of scenarios.

Research Obiectives: Provide tool which determines whether
requirements are satisfied by a specification with respect to a
particular scenario. (The value of this check Is, assuming
satisfaction, any undesired behavior detected by the user during
execution of the specification against the scenario will Imply
Incorrect or incomplete requirements.) Expand this tool to handle
classes of scenarios. Support automatic generation of a complete
scenario from a mission user's outline of desired behavior.

Solution ADproach: For generation of scenarios: reverse the flow
of reasoning in symbolic evaluation to deduce the class of Inputs
to a specification that generates the behaviors desired by the
user. For checking satisfaction of requirements against
specification (prototype) behavior: use abstraction
mapping/matching mechanisms to check whether the behavior the
prototype generated is a legal 7nstantiation (legal relative to
the requirements).

Iecommendation: Funding priority: High. Risk: near-term: low
to moderate, but moderate to high for handling classes of

C. scenarios. Automatic generation of scenarios and checking for
requirements satisfaction are among the highest leverage
capabilities of either track.

MANAGING RESOURCES

Where issue fits in process model: Supports all requirements
engineering activities by managing the human and computing
resources. Provides a basis for effectiveness measurements.

* Research Objectives: Manage the human and computing resources

needed to engineer a set of requirements, and track the resources
through the engineering process.

Solution Approach: Formally describe all requirements engineering
activities as tasks; identifying their dependencies, resources

* consumed, and results produced. Construct task manager which
understands these descriptions and guides user in task selection.
For multi-user efforts, expand task manager to coordinate all
tasks and use of tools among users.

* 64 .7 V,,, ,, ,e,.

-

Recommendation: Funding priority: Medium. Risk: moderate to
high. Success in this Issue Is strongly dependent on success In
most other Formal Language Track Issues.

Rejected Issues

The following Issues were rejected for inclusion into the Formal
Language Track. Reasons for the rejection are given.

REQUIREMENTS ANALYSIS METHODOLOGY

Rejected because existence of a formal language Implies a
basis for the formal treatment of descriptions, with "tools"
automatically Invoked In a data-driven problem-dependent
manner. The "coordination" of such invocations is left to

0 be addressed in the "Managing Resources" research issue.

SCENARIOS EXECUTION AND ANALYSIS OF RESULTS

Rejected as a separate effort because of its very strong
dependence on the formal language. However, rapid
prototyping will provide high leverage given the formal
language approach; with additional value in the formal
verification possible between the prototype and requirements
(with respect to particular scenarios). This capability
will be included in other Formal Language Track efforts.

NATURAL LANGUAGE

Considered as an aid to knowledge acquisition and
formalizatlon of descriptions. Rejected because that

technology Is already being extensively explored and Its
development is Independent of our Intended requirements use.
As it matures, it will undoubtedly be Incorporated Into the
RET. It was rejected as a RET-specific research area.

SOLUTION ARCHITECTURE SYNTHESIS I
Rejected because that technology is being extensively
explored and It examines an issue orthogonal to the primary

0 focus here. However It will provide high leverage as It
provides a basis for generation of rapid prototypes. As
the technology matures, It will be evaluated for
Incorporation into the RET.

* 65
- . - " -'. , - -. . . -. -

4.2.4 Resource Allocation

This section presents panel recommendations on the priorities of
issues within each track and on the recommended allocation of R&D
resources between the two tracks.

4.2.4.1 Prloritization In the Evolutionary Track

Research Issues in the Evolutionary Track were prioritized In the
order of preferred funding by the Requirements panel. Development
Issues were not prioritized relative to each other as they were
all regarded as critical to the Tool Evaluation activity (see
figure 4.2.2.1-3). The prioritization of research issues follows:

I-. HIGH:
Scenarios Execution and Analysis of Results

0Estimation of Cost, Risk, Time In System Development,
Performance & Execution Costs Analysis

Scenario Generation Support
& Scenario Coverage Analysis

MED I LM-HI GH:
Domain Models and Information

Dynamic Analysis

Requirements Analysis Methodology

,MED I IM:
. .- Requirements - Static Analysis

.~. 'I-- Requirements Evaluation

0.% MED IUM-LOW:
Goals and Requirements Synthesis

Testbed Effectiveness

LOW:
' Validation of Prototype and Scenarios

j" Solution Architecture Synthesis

* 66

4
6

% %

4.2.4.2 Priorltization In the Formal Language Track

Research Issues In the Formal Language Track were prioritized In
the order of preferred funding by the Requirements panel. As
explained In section 4.2.3.2, all language-dependent Issues were
treated as a single Issue, the "Formal Requirements Language"
issue. The prioritization of research Issues follows:

HIGH:

Formal Requirements Language

Scenario Generation and Coverage

- MEDI UM-HIGH:

Methodology for Formal Requirements Synthesis

i". MEDIUM:

EDl)1Managing Resources

4.2.4.3 Li .gflon of Pesources to Both TracksI

To establish a relative allocation of R&D resources between the
tracks, the panel partitioned the R&D issues into four groups andprioritized them. The groups were: Evolutionary Track research

Issues, Evolutionary Track development Issues, the Formal
Requirements Language Issue, and Formal Language Track other

'.., issues (see section 4.2.3.2 for explanation).

The result of the allocation:

. Group: Funding allocation:

Evolutionary Track research issues 30%

* Evolutionary Track development Issues 29%

Formal Requirements Language Issue 23%

. Formal Language Track other issues 18%

* To summarize, the panel suggests allocating funds between the
Evolutionary Track and Formal Language Track on a 60%/40% basis.
Within the Evolutionary Track, equal weight Is given to the

* research and development issues. Within the Formal Language
Track, the funds should be allocated between the language and

cther Issues on a 60%/40% basis.

* 67

% Z

4/ ..

5.0 CONCLUSIONS

The panel recommends that RADC pursue a Requirements Engineering
Testbed (RET) research and development program consisting of two
tracks: an Evolutionary Track and a Formal Language Track. Their
strategies are summarized below.

The Evolutionary Track

The "Evolutionary Track" proposes an evolutionary R&D effort to
extend the current formalisms and tools. Initial efforts are
toward the development of tools for prototyping Interfaces and
functionality, and In deriving performance estimates based on
estimated or simulated work loads. Future efforts would develop

I"e. tools and methods that aid in: (1) scenario development,
analysis, and execution, (2) cost, risk, and performance analysis,

-N" (3) the acquisition, modeling, and usage of domain Information,
and (4) requirements analysis methodology. Future efforts will

: • also go toward enhancing the prototyplng tools and formalisms.

The Evolutionary Track also proposes several development efforts.
(1) A database is needed to manage complex data such as
requirements, prototypes, etc., and would feature powerful viewing
mechanisms to simplify presentation of data. The database would
also serve as the central repository for data and permit sharing
data between tools. (2) A reconfigurable user Interface is
needed, and must provide uniform access to all tools and data
objects. (3) Testbed tools must be tightly integrated, permitting
their functionality to be manually Invoked or invoked with changes
In data (data-driven control). The Integrated testbed must also
track RET tool use to support later analysis of tool
effectiveness, and guide the user in tool usage (e.g.
methodologies).

The Formal Languagc Track

* Currently, requirements, specifications and prototypes are
partially (or completely) informal, and are separately and
manually produced. This Informality precludes tools which compare
one level with the next and limits the types of analyses that can
be done within a single level. The "Formal Language Track"
attempis to eliminate these difficulties by creating a common

" formalism in which all three levels are expressed and In which the
prototype can be generated automatically from the specification.
Tools would be provided for analyzing the requirements and
specifications and formally comparing them. The common formal
basis for requirements and specifications would be used to
automate the generation of scenarios to determine the satisfaction

" of requirements In a specification and the completeness and
appropriateness of the requirements themselves.

Thus, the Formal Language Track proposes research effort be spent

toward developing a single formal language for expression of

68

% % %

goals, requirements, and solution architectures (process model
terminology). Additional effort would go toward researching
relevant issues: (1) scenario generation and analysis, (2)
synthesis methodologies (getting conceptualizations Into formal
descriptions), and (3) the management of resources (coordinating
use of the resources supporting formal analysis).

Contrasting the Two Tracks

To contrast the two approaches, the formal language approach
offers much more formal analysis to be done and thus has high

,: .payoff, but requires considerable research before it will be
available. The evolutionary approach permits earlier RET hosting
of capabilities such as: prototyping, scenario development and
execution, and domain Information collection and usage. The
consequence is that Air Force users will be able to exercise these
capabilities on their requirements problems before availability of
the formal language. Also, the risk is distributed. These
complementary risk/reward profiles strengthen the program and
provide a natural phasing of capabilities.

Though not investigated in any detail, it is expected that some
positive results developed In one track may impact or eliminate

• .approaches being tried In the other, to take immediate advantage
of the result.

To the extent that formalisms are adopted in the Evolutionary
Track, the distinctions between the two tracks will be reduced or
el iminated.

RADC's currently-contracted tcols will be hosted in the RET by
early 1988. These tools will initially be loosely coupled, but by
1990, the objective is to tightly integrate them, and other new
tools, through the RET database.

A few years later, capabilities from the Formal Language Track,
* beginning with a common requirements and specification language,

will be available in the RET for test and evaluation. Thereafter,
both tracks will be strengthening their tools and methods and
using the RET as a test and evaluation vehicle.

• 69

0N

2..

"- . .- . - .- - . . - - . -. - . - . - .- . . ,', - r - . r , . " - ,- ,* - , ,,,,- " - , ,

-3' '', - .. -,'.- ., --- .-- . -- , 'r"- ' " " " " ,. '
* . .. 69 . . ,, . ,,, . . , - ,, ,, , ,, . , , ,, . ,,

.- .' . .- - . .- - .. .- .. '- - . .- . .,- ," ." - .," .- e . ,, %' ," ,, , 3,,e ., ,- ..

- 6.0 EPILOGUE: RESULTS FROM A REVIEW OF THIS REPORT

Following completion of this report, copies were distributed for
review. This section presents reviewers' comments and
suggestions.

The review was carried out by computer scientists from both
academia and Industry. Their comments and suggestions were
solicited on the first five sections of the report. The reviewers
were:

Mack W. AIford - General Electric, Valley Forge,
V~i Pennsy Ivan I a,

MCC, two anonymous reviewers selected by Laszlo A. Belady -

MCC, Austin, TX,

Harlan Mills - IBM and University of Maryland, Maryland,

Grula-Catalin Roman - Washington University, St. Louis,
.Missouri.

The comments below are reported anonymously. No comment should be
taken as the unaminous opinion of all the reviewers, in fact there
was no comment common tc all reviewers.

Summarizing, the report was said to be technically strong, though
with shortcomings.

._- chnIcal Strength

In general, the recommendations on the Requirements Engineering
Testbed Research and Development Program were perceived as sound,

going a good way toward addressing problems later encountered in
systems development.

The Requirements Engineering Testbed concept as a vehicle for
technology transfer and for maintaining research In systems
definition was also considered to be sound.

The Shortcomings

.i..; In the minds of some reviewers, the most serious shortcomings
'.: were:

0 (1) The recommendations lean too heavily on formal
specification techniques.

(2) The recommendations do not rest on a sufficiently
adequate foundational basis, affecting the credibility
of some of the recommendations on tools.

Responding to the first comment, It is the consensus of the panel
..- that formal specifications will have a big payoff in the long

v%"

70le

,.,-"." % * " . ,
%* *. %*

term, but relying on them in the short term is naive. That is why
at least two-thirds of the 1990 Requirements Engineering Testbed
is based on "informal" approaches, I.e. the Analyst and RPS. The
role of formal specifications in the testbed Is expected to
gradually become more prominent after that.

Responding to the second comment, the panel agrees on the absence
of a strong foundational basis, and knows of none. One major
reason why long-term research and development programs are funded
Is to provide opportunities to Identify such a foundational basis.
One way to do this is to Identify and develop promising interim

- approaches that give rise to new Issues and Ideas that can be
explored. In the report, the panel attempted to define such a
long-range program.

Additicnal Opportunities

All reviewers identified one or more research and development
opportunities they felt should be Investigated:

(1) Simple solutions such as enhancing the communication
between mission users and system engineers, and using
good people to do the systems engineering.

(2) What to do on ill-defined problems. A.

If the problem can't be readily defined beforehand,
all of the techniques explored by the panel provide
little help.

(3) The "Requirements Volatility Problem". Mission and
user needs change with time, thus the requirements
change with time.

A..

(4) A more flexible representation for scenarios and
scenario sets. Benefits obtained would include a
project-wide glossary, and the use of scenarios to
explore the boundaries of system capabilities.

Responding to the first half of (1), and acknowledging (3), it
* • should be recognized that the panel was Investigating the

requirements problem In the context of government procurement,
which makes some solutions to these issues Impractical.

Responding to the second half of (1), the panel agrees on the
Importance of using good people to do the systems engineering.

Responding to (2), the panel voiced no technique for exploring
Ill-defined problems other than prototyping, evaluating the
prototype in near-actual use, and iterating. The panel feels that

-the requirements process model already addresses this, though
Impl icitly.

Responding to (4), the report recommends that "Scenario Generation
Support & Scenario Coverage Analysis" and "Scenario Execution and

%.,%

e % %

Analysis of Results" research and development Issues receive high
priority for funding. In short, the panel agrees with the
reviewer on the Importance of scenarios, though maybe feels
differently on where to place emphasis.

Miscellaneous Comments

One reviewer recommended that a critical objective of the
Requirements Engineering Testbed should be to close the gap
between "goals", formulated in terms of mission concepts, and
"requirements", formulated in terms of system concepts.

The panel feels this to be a presentation issue. It feels the
Issue Is addressed In the proposed program, and was one major
reason for making the distinction between "goals" and
"requirements" in the requirements engineering process model.

In addition there were a number of comments recommending further
thought on parts of the process model: addressing performance
requirements, design decomposition and representation, and the
affect of size and complexity on the requirements problem.

A serious concern was expressed on the tool tevelopments implied
by the 1995 ,cenario. The reviewer felt that more thought was

Ne~ required on their justification.

The panel agrees on the conjectural aspects of the 1995 scenario.
The panel was attempting to project feasible capabilities, as a
means of identifying long-range objectives in the Formal Language
Track of the research and development program. As knowledge Is
acquired through the Requirements Engineering Testbed program, the
direction of anticipated tool developments should be revised.

Summarizing, the major concerns seem to be:

*. A better foundation for representing requirements and

techniques for eliciting and expressing them.

* Continued reevaluation of the formal specifications
tool development program as to direction and
justification.

*, A more flexible contracting process, permitting a more

*• opportunistic Interleaving of definition, development,
and evaluation efforts. Also, permitting better
communication between mission users and systems
engineers.

72

4. % % % 0Z% .-
,

.....= . . , ,w ? : %
.".-'-".- .' '-". ".'''-" " - :".'..'-'. .-. .- %..' ' ',,.kw,._-, .,, ';' ' - - ' ' ' ,,_%r-."..

. .. ,,v -:, .. ,-.-.., ": .. -".. , .,".- . .. v . ., . • , ," .. x'.,

APPENDIX A: DETAILED CHARACTERIZATIONS OF TESTBED USERS

This section provides detailed characterizations of three
classes of Testbed users: Mission users, Acquisition engineers,
and Software developers.

S10Characterizations are given for three different times: "Now",
"5 Years", and "10 Years". For each user class and each time, the
following Is described:

* BACKGROUND- degree of user sophistication with computer

tools, languages, and applications
* ISSUES, QUESTIONS - what are the user's concerns with the

requirements, what Is his role?
* HELP - What kind of support would enable the user to

satisfy his objectives?
• TECHNICAL ISSUES - What technical Issues must be

addressed if help is to be given to the
user?

As RET R&D program focus is on helping the Mission user and
Acquisition engineer, "Help" and "Technical issues" descriptions
are not provided for the Software developer.

For each testbed user: "Issues, questions", "Help", or
"Technical issues" characterizations that appear early in the time
line generally persist throughout the remainder of the time line.
To conserve space, we avoid repeating them.

% %

001

.4..

It* .
*'',%

Mission User.

Li=e: Now

b.ackg.roufd: Issues. questions:

* Access to "time-shared" * Will I be able to accomplish

text-or Tented terminals my mission?

* Computer literate, but no * Will I survive under this

computer special izations scenario?

* (Typically) manages message * Will I be "frozen out" because

handling systems : the computer system has removed
accessing/correlating Info control from me?
from local and remote
databases, notifying others * Are accuracy and response time

sufficient?

* Limited networking: * Is the interface oriented to

(1) user-to-user on mission- my needs?
" %"..related job

(2) transmittal of requirements * As the system wears down

documents among among acquisition through attrition, will I be

engineers able to invoke appropriate
back-up systems?

* What diagnostics are

automat ic?

Time: 5 years

backgrouidQ!: issues. auestions:

* Graphical interface (vs. textual): * As the system wears down

forms/icons style of computer dialog through attrition, will it
,* degrade "graceful ly"?

* One PC per desk * What repairs are automatic?

* Networking standard among:

(1) user-to-user with respect to
a mission-related Job;
(2) (RADC) acquisition engineers,
sending back and forth
requirements documents

* Strong resistance to formal methods

(prefers learning time of 1 hour)

A-2

- .

',. ' .,

* Familiar with some canned programs

* Prefers interface suited to his
.. application domainf.%

* Training: application-oriented

Tme: 10 Years

bacg .r .1Lr: issues. questions:

* Networking: poteni al for * Is there a latent system
conversationamong all three users error that will cause
(especially mission user and mission failure?
acquisition engineer) (link to
software developer Indirect through
agent)

* Electronic mail paradigm/culture

* There will be a mission-assoclated
language, with which user will be
famil iar

* Experience with knowledge-based
systems advice-giving, fourth
generation languages (resulting In
automatic generation of programs)

Acquisition Engineer.

-..T e: Now

bckar.oudQj : issue . questions:

* Shared dumb terminal (6 questions relating to
whether the requirements

* Shared PCs Just beginning are right:)

0 * Knowledgeable of application * Do they fulfill the

user's needs?

Computer literate and one or more * Can the sytem be built?r,--' special izat ions

-• * Familiar with a word processor and * Are cost/schedule expectations

spreadsheets real istic?

A-3

_0eW A
% ,

" Very limited office automation (10%) * Are mission user concerns/needs
understood by the developer?

* Is the mission user sensitive to

* 'development constraints?

* Is each requIremen; 4uantlfiably

demonstrab I e?

A, * Can procurement selection be

Justified on technical grounds?

* Is competition being fostered
(will there be many responses to
my RFP)?

N., Time: 5 Years

*~ ~Lbacround: .JSjSUes. questions:

* One PC per desk * Which requirements should be

eval uated?
* * Limited networking:

(1) with mission user, * For certain requirements, are
(2) possible objective: tie there alternatives? What

.4 .p developer in for big development costs/benefits do they entail?
r. ... ,programs

* Limited office automation (20%)

* Increased specializations

* Limited prototyping for requirements

.'4- evaluation and validation (associated
with Incremental development,
especially interfaces)

* Metrics for evaluating alternatives

Ni

2 ime: 10 Years

b-a c r uJ : issues. questions:

* LANs, providing access to a wide * Can software procurements go

spectrum of computer resources fixed price, warrantled?

* * Limited decision tools (little Al)

* Breadth of computer knowledge

A-4

0

{..-

-. - --. p ~~~~W- t - LIN a n " fl I %-R Mdar l 3%1 M nSL flR ALM W-TM ft. NJ-I pull "J F r i dl MnP ll /I 1W, SI M 1 I V A Mfl

* Office automation (50%)

* Al-based decision tools

* wide use of prototyping for

requirements evaluation and
validation

SSoftware Developer.

Ilm~: Now

background: issues. guestions:

* One language fluency * Do requirements over-specify a

design? Or, are requirements too
* Workstations on LANs mission-oriented (high-level)?

* Access to large machine * Does the development staff have
the required skills?

* Office automation support * What are the hard real-time
problems (which functions in

* No automated allocation to multiple which scenarios produce

processors bottlenecks)?

V * Large group of helpful peers Are cost/schedule constraints

compatible with function/perfor-
mance requirements?

Lime: 5 Years

back n: issues. questions:

* Highly supportive workstation * Can I eke out a competitive edge

through systematic experimen-
* Fluency with several workstation tation of system alternatives?

environments

* * One physical workstation per * Does my development team have

desk, on networks access to and knowledge of the
best development tools and

* Comfortable in using a number of techniques to do the Job?
languages

•_ * No design/architecture support tools

* Develcpment host and operational

host separation

V A-5
0

I]
S

* Functions parsed Into multiple

processes

* Breadboarding of all critical

design ideas

Slme: 10 Years

background: Issues. questions:

* Whole environment fosters * How can I demonstrate, or prove,

"competitive differentiation" a priori, error-free operation?

* Prototyping testbed for evaluating

real-time system requirements

* Design/architecture concept support

* tools

* Expert system technology matures

* Build software first, then order

hardware highly tailored to
software arch itecture

0A-

,.. '.

9.,

I..;,

-A-:

0 -

L

,,.

Now a characterization of the kinds of support that would enable the mission
user to attain his objectives.

Y -Mission User.

Iine: Now

h.&LJQ: technical issues:

* Expert committee pulled together (partial solutions already

by mission user exist)

* Limited incremental development

(pre-planned program Improvement)
for putting together large systems

Time: 5 Years

techn-Ical Issues:

* Conceptual model (mission-oriented, * Application-oriented VHLL for

stated In English) of what is needed prototyping and simulation
(basis of statement of need)

* Limited use of operational models * Advanced data base concepts
of major subsystems; providing

opportunities to stress-test criti- * Real time: user experiences
cal functions unfolding battle

* Reusability

-ome isolated expert systems * To support real-time simulation:

based upon domain rceIs high-speed processors

* * Risk evaluation via rapid

prototyping (seeding errors at
requirements level)

.. * C31 rapidly reconfigurable
environmental simulator (hardware
and VHLL)

* Parallel algorithms to provide
opportunities for concurrent
processing

0

A-7

de0W
. 6 . -

5 .

(I

Time: 10 Years

h la: technical Issues:

* Operational models widely used * Artificial intelligence:

" Rule generator for VHLL
* Partially Integrated domain models ** Rule critiquer

,* domain-model support

%..

A characterization of the kinds of support that would enable the acquisition
engineer to attain his objectives.

Acquisition Engineer.

[e Time: Now

- '.'-' ._ : _._e._bn ical Iis-sues:

* Very limited rapid prototyping (partial solutions already
exist)

* Incremental development routinely

done

* Simulation models

* Scenario generation (via graphics,

etc.)

- Cost estimation models

-"'-'v * Proposal evaluation: architectur
.alLtIoLn especially (i.e. high level
design) (mental exercise); prggra
development plan (mental exercise)

* Formal review process (no separation
of views), and walkthroughs

* Experimental use of new languages,
tools, methodologies (especially in
the validation of the requirements
delivered by the contractor)

* * Performance models (assessments

of computer configuralion
(through queueing models))

'A A-
* A-8

• %." " "w" " ,",''I ",'W " W' ," " ' . ."," ' "" ' " ", ,' ' " ,r , , w.v - ., . ,. , -.

5 Years

technical issues:

* Limited use of rapid prototyping * common VHLL/database for

for evaluation and validation of exercising requirements with
requ I rements many tools

* risk/cost evaluation of alternatives * VHLL for rapid prototyping

(for requirements specification and
evaluation of design approaches in * advanced data base concepts for
proposals) knowledge representatrun (doma!n

modelling) and update
dependencies

* Static analysis of requirements: * distributed environment
,. syntax-checking
** ad-hoc measures for evaluating

* test case generator and scenario
* * Ad-hoc measures of evaluating the generator for stress-testing

tools that produced the requirements

* Viewpoint enactment tools in * risk/cost models/metrics
limited use (separation of views)

* domain models (functionality,

performance, test data
characterization)

* (other Issues similar to mission

user)

Time: 10 Years

helm: teh.n.cal Is.ues:

* Fully integrated models: * Artificial Intelligence:
• * domains ** mission --> plans representation
' simulation ** modelling support
** system definition ** update dependencies support
** scenario

* validation * Advisor on procurement strategies

* Significant use of rapid prototyping

for evaluation and validation of
. requirements

• Increasingly formal and semantical

static analysis

A-9

PL.

JL h

TUM: 15 Years

Requirements specification standards:

Each requirement Is a quantiflably
measurable augmentation or constraint
to system behavior (through testing or
IEEE standard evaluation)

.A-10

p..-'.4

'

4".

"0'

A-10.

S -I - -- -.-- '. . -. /- - - -. , - '. - - " - " % - - " - -,

y.,

APPENDIX B: DOD STANDARD 2167 AND THE REQUIREMENTS ENGINEERING TESTBED
PROCESS MODEL

DoD-Std-2167 prescribes requirements for the development and
acquisition of software in terms of six software development life
cycle phases: software requirements analysis, preliminary design,
detailed design, coding and unit testing, Integrating and testing
of Computer Software Components (CSCs are aggregates of software
units) and testing of Computer Software Configuration Items (CSCls
are the highest level aggregation of CSCs and units). Its
emphasis is primarily managerial. It concentrates on the planning
and scheduling of products and reviews by which a software
development and acquisition can be controlled. Technical guidance
on how the software should actually be designed and built Is
minimal. It is implied by the hierarchical structuring of the
CSCI, CSC and software units to be a top down decomposition based
on functional requirements, data flow requirements or other design

* considerations. The software development model prescribed by 2167
Is also directed for use in the development of software in all
stages of the system life cycle. This includes concept
exploration, demonstration and validation, full scale development
and production and deployment.

The Requirements Engineering Testbed (RET) process model is a
partially iterative set of transformations to a set of
descriptions which take user needs from a very informal, wish list
stage, to formal requirements and partial designs. Its primary
intent is in describing the technical nature of the products and
the transformations which they undergo. It does not explicitly
address management and acquisition issues. It is intended to
iteratively evolve user needs Into requirements during the
software development activity which precedes implementation.
There Is nothing inherent in the model which would preclude its i
use during post implementation activities, for example, to
incorporate changes to user needs and their related requirements.

The purpose of this appendix Is to assess the relationship between
2167 and the RET process model. All of the Software Requirements
Analysis phase activities, products, reviews and developmental
baselines defined by 2167 will be Identified and their
relationship to the RET model will be explored In terms of the
kind of Information which the RET model produces and which would
be usable within the requirements of 2167.

Software Requirements Analysis Activities defined by 2167

Establish control of various management documents, such as,
the Software Development Plan (SDP), Software Standards and
Procedures Manual (SSPM), Software Configuration Management
Plan (SCMP) and Software Quality Evaluation Plan (SQEP).

B-i

None of these plans or manuals are addressed by the RET

model.

Analyze the previously developed developed, prel iminary
Operational Concept Document (OCD) and describe the system
mission, its environment and the functions of the system's
computer system.

The OCD is a description of how the target system will
appear to its users and the ways that the users will
Interact with It. The OCD provides a statement of the role
or mission of the target system. It describes the
physical/tactical environment in which the target system
will be used and Identifies its performance parameters. It
lists and describes the functional roles in which the target

* system will support its users. It describes the
capabilities which it will provide to these users in these

V rules. It outlines the hardware (including computer)
complex which will be required to support the target system.
Finally, it gives the plans for maintaining, upgrading and

0 adapting (to changing requirements) the target system.

C-' The RET process model recognizes that good user

understanding of the mission, application and specific job
actions is critical In performing the RET process model
transformations which take wishes to goals and goals to
requirements. This body of knowledge currently resides with
the user. The RET model recognizes the need to formally
represent it in domain models. This information could be
used to help directly in the analysis and description
activities which 2167 requires.

Analyze for adequacy, testability, understandability, validity and
completeness the previously developed preliminary versions of
technical specifications, such as the System/Segment Specification
(SSS), System Requirements Specification (SRS) and Interface
Requirements Specification (IRS).

• In the context of 2167 this activity and Its predecessor,
A., I.e., analyze OCD, form a logical sequence of events leading

up to the (next activity) definition of requirements. The
RET process model does not explicitly Incorporate the
analysis of "outside" requirements or specifications. It
assumes that all such Information will have originated

0within the RET model, will be expressed In a native RET
representation form and will be analyzed using RET model

facilities.

Define a complete set of functional, performance, Interface and I
qualification requirements for each CSCI including programming
constraints and standards, design constraints and standards,
adaptation, quality factors and preparation for delivery.

-B-2

* . %

=. I'

p..~ ~~~~~~~~~ *::%:....U ~ ~ JP~- ~

The RET process model is directly responsive to most of the
requirements of this 2167 activity. Completeness Is, of
course, elusive. Given the RET model's static analysis,
animation and prototyping capabilities, it should be
possible to produce a set of requirements which are as

1/ complete as current understanding of the system and Its
environment allows.

Function and Interface requirements are addressed by the
model's language for representing requirements and the
methodology for its usage. Performance requirements are
addressed by the model's language elements which permit the
representation of goals.

Qualification requirements refer to tests which can be used
to validate the requirements. Although the RET model

' provides validation mechanisms through prototyping, It does
not explicitly structure test sequences (inputs, expected
outputs, coverage criteria, etc.) which are designed to
demonstrate requirements compi lance during final acceptance
testing.

Since the RET model deals with candidate solution
architectures, it addresses design constraints at this 1
preliminary level. It does not address programming
constraints or standards for either design or programming.

Adaptation to changing requirements is Implicit in the
.' requirements language supported hy the model and explicit in

the model's iterative, refinement nature.

The quality of products produced by the RET process model,
although not explicitly captured in the model, is a research
issue to be addressed during the long term construction of
the RET.

Identify structured requirements analysis tools and techniques.

* Implicit In the RET process model.

Conduct internal In-process reviews of requirements documents for
the purpose of Improving the quality of requirements prior to

-, delivery to the customer.

* The RET model Incorporates an explicit evaluation step as

part of Its iterative process of requirements refinement.
This process includes dynamic analysis of requirements and
analysis (performance, cost, risk) and prototyping of I
partial cesigns.

J

0 B-3I

% '%

6

Software Requirements Analysis Products defined by 2167

Updatea versions of the SDP, SSPM, SCMP and the SQEP.

The RET process model does not address these
management documents.

Updated version of the OCD.

The domain models, which are major elements In early
RET process model transformations, could provide
valuable mission, application and user cognitive
Information during the OCD updating process.

Reports of internal reviews for recording and summary purposes.

The R ET process model does not address management reporting ".
d*. issues.

System Requirements Specification and Interface Requirements
*;. Specification for each Computer Software Configuration Item. -[

These documents couid benefit directly from the requirements
and partial designs which are the major products of the RET
process model. However, several format and content
differences must first be reconciled in each case:

SRS

The SRS requires documentation of design and
implementation Information such as programming
requirements (language, compiler/assembler,
programming standards), design requirements (sizing,
timing, standards, constraints) and interface requirem
ents. The RET model clearly does not address
programming issues. It may be able to assist with
some design Issues which are likely to surface during
preliminary design. Candidates include performance

* constraints, Interfaces between major software
components (CSCls) and Interfaces between major
software components and major hardware components.

The actual functional and performance requirements
certainly could be directly found in the requirements

* and partial designs produced by the RET process model.
However, format Is a potential problem because the SRS
demands that these descriptions be given as a
functional hierarchy with each function being

*1~ described by Its inputs, processing and outputs. The
A. same requirements are also placed on all subfunctions.

B-4
% !

- V ~ , ~ ~U y~~'~1R P ~P~i VWVWWrV 1rWWWV WVTW1'IW. W'.TW'.

N Although the exact representational form of the RET
process model's requirements has yet to be determined,
it is likely that Is underlying model will be object
oriented. In this case some translation between the

ft. objects, relationships and operations of the RET model
and the SRS functional breakdown wIll be required.
This appears to be more than a minimal effort, since
It is likely to require human interpretation.

SRS requires low-level operational information such as
site dependent environment data (e.g., radar ranges),
system parameters which vary according to operational
needs (e.g., allowable trajectory deviations) and
system capacities which are likely to change (e.g.,
secondary storage). The RET model Is not intended to
expose information at this level of detail.

The SRS includes the description of 12 quality
factors: reliability, correctness, efficiency,

* integrity, usability, maintainability, testability,
flexibility, portability, reusability and inter-

* - operability. The RET process model deals explicitly
with only reliability. Correctness (consistency and
completeness checking) and usability (interface
prctotyping) are addressed to some extent.

The SRS Includes support items such as facilities,
equipment, software, personnel and training which
would be used during the development, operation and
support of software associated with the requirements
being documented. The RET process model does not
address these issues.

The SRS requires qualification of the software which
is generated from the stated requirements i.e., that

it actually satisfies the requirements. Qualification
'ft.." methods Include Inspection, demonstration (observable

functional operation), testing (collection and
subsequent examination of data) and analysis
(processing of accumulated data). The RET process
model supports all of these methods to some degree.

Inspection and demonstration of functional operation
can be done through rapid prototyping of both

0 Interface and functional requirements. The RET model
-t. provides for performance and reliability analysis of

partial designs. Results of these analyses could be
helpful In supplementing the testing and analysis
qual ification methods.

B-5

% l
.............................

z.Z

IRS

The Interface Requirements Specification describes the
requirements for one or more interfaces between major
software components (CSCIs) and other configuration
Items (software and hardware) or critical Items In the
system. The IRS requirements for describing the
Interfaces and their qualification are Identical to
those contained In the SRS. The IRS Is meant to be an
elaboration of the SRS with respect to component
Interfaces. Consequently, the comments given above %
for these aspects of the SRS are also applicable here.

Software Requirements Analysis Reviews defined by 2167

2167 requires a Software Requirements Review (SRR) at the
completion of the software requirements analysis phase to
demonstrate the adequacy of the OCD, SRS and IRS.

The RET model defines a requirements evaluation activity as
* part of its iterative process for refining requirements and

partial designs. However, the intent of the RET model is to , ,
perform evaluation as an integral part of the requirements
refinements process. This differs from 2167's SRR which is

-*. a final, formal review, Intended to convince management that
the requirements are acceptable for use in the next
(preliminary design) phase of the software development
cycle. In the sense that the SRR acknowledges requirement
problems and accommodates their resolution, it resembles the
RET model's evaluating activity. The RET model's evaluation
activity could be used as a single review point, but this
would have to be considered a degenerate case of RET model
application.

* Software Requirements Analysis Baselines defined by 2167

2167 defines the SRS and IRS to be allocated baseline for
further design and Implementation activities at the time

* these documents are accepted by management, I.e., at the
successful conclusion of the SRR.

The RET process model does not address allocation or
configuration of project baselines.

The relationships between DOO-STD-2167 and the RET process model
are many and complex. This results from 2167's being a demanding
standard for software documentation. Several more specific
conclusions are possible:

B4

The RET process model clearly does not satisfy all the
documentation requirements of 2167. As would be expected,
its major deficiencies are related to 2167's management and
acquisition requirements, specifically the various plans for
organizing, procuring, configuring, baselining and assuring
the quality of a large scale software development in
accordance with established standards and procedures.

The requirements and partial designs produced by the RET
process model can provide direct assistance in preparing
much of the technical information required by 2167, such as
the functional, performance, Interface and qualification
requirements.

The RET process model's mission, application and user
cognitive domain models can be used to generate portions of
the Operational Concept Document.

The RET process modoI cannot assist in the analysis of

*previously developed requirement and specification
documents, such as the System/Segment Specification, as
required by 2167. The RET model does not recognize the
context (earlier software development cycle phases) In which
such documents were developed, nor are such documents in the
language and format required for analysis by RET processes.

The requirements evaluation activity of the RET process
model Is ilerative In nature and does not map well Into the
single review point mechanism required by 2167.

The RET process model does not address certain low level
design and implementation information, such as language and
compiler specification, which 2167 requires.

The RET process model will most likely be based on a
44 paradigm (object oriented) which will not be isomorphic to

the hierarchical structuring of software elements as
required by 2167.

The RET process model does not address a number of software
quality factors, such as correctness, Integrity and
maintainability, which 2167 requires.

I

€'.4

A-

* B-7
4

.4t %' % 'N~X Vi

A~ 4 Y K . . .,k

APPENDIX C: PROCESS MODEL: DETAILED CHARACTERIZATION

C.1 DefInitLons

In figure 3.1-1 of section 3, boxes, clouds, and numbered arcs
represent Information relevant to the engineering of requirements.
In this subsection, we give detailed characterizations of each
information type: what it expresses, Its role In requirements
engineering, Its properties, and in what notations it is
expressed. We consider the Information types in the order we

q.. might encounter them looking down figure 3.1-1.

EN _WEERING CONTEXT DESCRIPTIONS

Represented as a cloud because of its external and meta-level
status.

E2;prss. There are external constraints and concerns Influencing
requirements erginecring. There will be limitations to the amount

9 of effort that can be spent ("effort constraints" in the figure).
Fully engineering a "final requirements and partial solution
architecture" Is only an Ideal, so it is important to keep a
pricritized list of objectives in hand ("goals of requirements
engineering exercise" in the figure).

Role in requlrements enlaneering. Focusing In on the RET context,
the above concerns are more acute. A principal goal of the RET is
the evaluation of requirements engineering tools and techniques
(i.e. measurement of process and product). This evaluation
requires many RET experiments, each of limited effort and
carefully selected objectives. Hence the increased acuteness.
Concerns of making a limited resource (the RET) effective to a
broad audience (Air Force requirements engineers) will also
influence the nature of the requirements engineering efforts
("testbed effectiveness" in the figure).

Represented as a cloud because of Its external and undocumented
status.

-Ef pres. Wish lists are expressions of desired attainments, but
unlike goals, there is generally no attempt at documenting the

*context of the desire. Wishes are generally characterized as
"likes" and "don't likes" in the doma!n-specific terms of existing
solutions. Wishes originate with mission users and administrators
in the field.

loIe In-RequIrements EnoIneerIng. Wishes motivate the need for a
* new system; they are an external source in the process model.

They are not formally maintained unless they can be precisely
stated in goals.

C-1

N % 0
% % % % x - .--

L%- % N.

Prerties. Very Informal, often poorly conceptualized. Wishes
may be Inconsistent, even if from the same source. Worse yet,
they may be misleading; a "like/disllke" statement is likely to bp
imprecise and therefore ambiguous. Wishes may change.

Notations. Wishes originate In people's heads. Expressed in
natural language. Domain-specific terminology will likely be
employed.

GOALS

Expes. Goals express desired attainments, but goal expressions
, should characterize the context of the desire too. Target system

users, administrators, and procurers all have goals, so there may
be many sources for goals. Normally, each set of goals
characterizes the viewpoint of a single role In the operation,
administration, or maintenance of the target system. Such a
characterization includes: mission performed, Interactions with
target system and other users, and desired attainments (e.g.

* "immediate response") expressed as constraints on the behavior of
the target system (perhaps thru a scenario).

Goals can be "guiding philosophies", documenting the metrics of
concern (e.g. "a fast tank"). In addition to characterizing
desired system behavior, they can characterize desired cost or
desired availability.

Role in Requirements Eng . Goals: (1) Help control
complexity early, specifically requirements collection and
validation, because such efforts are naturally partitioned Into
different viewpoints, as are goals. (2) Goal expressions document
the source and context of expectations on target system behavior,
which sometimes must be explored during reviews or during
ma i ntenance.

Preries. Within a set of goals, consistency should be
maintained, but between sets of goals, Inconsistencies and

* conflicts will be common, reflecting the different missions In
which the target system must participate. Concerns of technical
achlevability are second-order.

Notations. Currently, goals are rarely expressed, and then only
In descriptive English prose. We envision use of domain/mission-

* specific formalisms and general requirements notations.

xpx _ s. Requirements characterize the target syslem in terms of:
* its operational environment, Its Interfaces, Its functionality,

and constraints on its performance, reliability, development and
avaIlability. Pequ!rene'ts express at 's redea, but also

C-2

- ~ 'r . I44 .., ,.• v' ,,." ,.',.._._r~, .,.,2,' ,-., ar , "• _,: . -w Kwj#Dw~w],,r,,,"':,.t"'V~'%, % ,% E L{'
, , . , ,% 'w'i " :,.',W" 'p,, -' ' . ." " KY.

document assumptions on how external agents (users, existing
systems) will Interact with the target system.

Role in requirements engineering. Obvious.

Prooertile. Requirements should be operationally testable and
consistent. The requirements should constitute a closed
(complete) external model of the target system and its
environment. Requirements should reflect what Is technically
achievable, but the developer has full Implementation freedom
within the limits established by the requirements.

Notgtion. Requirements have generally been informal and stated
in a natural language, but future requirements specifications will
utilize more formal notations as complexity of the needs to be
conveyed increases.

Notational mechanisms are often employed that factor requirements
into different concerns and/or levels of description.

SCENAR IOS

In the process model, a scenario is part of a goals or
requirements description.

1xp- u. Scenarios characterize hypothetical Interactions that
emphasize target system role(s).

Typically, a scenario description has three kinds of parts: (1) a
characterization of the initial state before the Interaction, (2)
a sequence of actions against the system, and (3) a
characterization of the expected results (or final state).
Scenarios may consists of several action sequence and expected
result pairs.

Role in requirements engineering. Scenarios can aid the
communication of goals and requirements by Illustrating expected
usage. Or scenarios can Illustrate expected system behavior in
response to exceptional or stressful input, thereby having the
role of a system constraint. Scenarios can be used as test data,
especially In exercising prototypes and in system acceptance
tests.

SProperties. Being part of a goals or requirements descr'ption,
scenarios will tend to exhibit their properties In roughly similar
degree, e.g. in technical achlevability and operational
testability. Scenarios should be consistent with the description
of which they are a part.

* Scenarios may be fine-grained in action/result characterization or
b " coarse-gra;red.

C-3

9a ..1%

Notations. Natural language and domain-specific terminology are
employed. Some formalization of their structure is not uncommon;
for example, representing the action sequence by a command file
(sequence) of procedure calls.

SOLUTION ARCHITECTURES

Express. Solution architectures characterize how the target
system can satisfy the requirements. Solution architectures are
descriptions of the target system as a composite of parts (e.g.
objects, functions) and resources (e.g. people, software,
hardware) and how the different parts utilize the different
resources.

Role In requirements engineering. Aids evaluation of requirements
by: (1) aiding understanding feasibility and development
implications (thru cost and risk analysis), (2) providing a basis
for prototyping functionality, interfaces, and performance which
by means of exercises and simulations lead to a better
understanding of user needs, and (3) aiding making trade-off
decisions.

Properties. Solution architectures need not be complete "system
parts and resources" characterizations. They must be internal ly
consistent and should be consistent with the goals or requiremenfs
they were constructed to stress.

Notations. Solution architectures are mostly formal descriptions.

Design notations may be utilized for expressing the partitioning
of the system into parts, and algorithms for expressing resource
utilization strategies.

As with requirements, notational mechanisms are often employed
that structure the descriptions into partitions and levels.

DONA IN MODELS

Generally, domain knowledge is (cohesive) knowledge that persists
beyond a single or short-term application. Thus if collected,
such knowledge can be reused and referenced by goals,
requirements, and solution architectures of several projects.
This is the reason for its separate yet special status (numbered

arcs) in the process model figure.

r A domain model Is an encoding of knowledge specific to a
domain. The knowledge is characterized thru a mixture of
terminology, basic facts, and empirically-derived relationships.
Domain expressions can be as rich and complex as expressions of

,S knowledge, in general. Knowledge within a domain may exist at
different levels, e.g. knowledge of how to use other domain
knowledge (i.e. meta knowledge).

C-46 e e
% % %

Role In requirements engineering4. Domain Information has value
throughout requirements engineering.

._. Examples identified In the process model (not a complete orW . mutually exclusive set): (1) Mission models - the goals and work

-" style of a particular mission user (e.g. Intelligence analyst).
Aids In creating goals descriptions. (2) Application domain

- models - the operations available In a particular application
(e.g. text editing). Aids In understanding user likes/dislikes

v and in defining systems that perform similar applications. (3)

)," User cognitive models - how much will human capabillities (such as
decision making) be stressed. Aids in creating and analyzing

! i requirements descriptions. (4) Software resources (e.g. operating

system, DBMS), algorithms (e.g. search, sort), and (5) hardware
W models (e.g. networks, run-time environments, and performance
"¢ attributes). Both aid In designing solution architectures and In

ghq

.their analysis.

Properties. As noted, domain Information pershsts. A domain

model should be conceptually cohesive In the sethe of constituent
parts relating to the same thing. The base terminology ("axioms")

of a domain may be selected with different stability and fidelity

deciion . Mostly informal and natural language. As knowledge
* representation and acquisition technology Improves, use of

formalisms In expression of domain Information will Increase.

FINAL REQUIREMENTS AND PARTIAL SOLUTION ARCHITECTURE

odThe final set of requirements and architecture ideally are the
. ttresult of many compromises and factor In many concerns. They are

the end product of the requirements engineering process.

Praertig. As complete, consistent, feasible, operationally
Srtestable, and traceable to user needs as the technology and time

allow.
C.2 Process Model Activities and Support from 19901995 Tooils

In figure 3.1-I of sectlon 3, circles, ovals, and rounded-corner
boxes represent the activities relevant to the engineering of
T lrequirements. In this subsection, we give detalled
characterzatons of these activities In terms of: T a

" termination/invocation criteria, and tools that will assist the
activity In the 1990 and 1995 RET. These tools are products of

"-" the RET R&D program and are described In greater detail In section ,
" 4 and appendix E. The 1990 tool-support characterization is made

In terms of the Evolutionary track. The 1995 characterization is
nmade In terms of both the Evolutionary and Formal Language tracks.

C. We consider the activities in the order we might encounter them
. nflooking down figure 3.1- . 3a

~C-5

-0

Goals Synthesis from Wish Lists

Through user Interviews/reviews and reference to appropriate
domain models (e.g. mission models), wishes are refined and
documented with appropriate context, creating goals.

Termination criteria: Terminate when a complete and consistent
set of goals has been constructed for each viewpoint.

Tool suppoDrt in 1990 RET: DBMS-based mechanisms to support reuse,
syntax-directed editing, and view management. The Analyst might
be enhanced to utilize these mechanisms.

Tool support in 1995 RET: Evolutionary Track: Advanced DBMS to
support access and manipulation of domain models by both users and
other tools and to help state goals. Tools that support:
knowledge acquisition, domaln-specific dialogues, and expert

'.critiquing.

Formal Language Track: Nothing beyond the Evolutionary Track
approach is planned.

i.%4

Requirements Synb.hi fmals

Conflicting descriptions In the sets of goals must be reconciled,
creating a consistent model of the operational environment of the
target system. Expectations of target system behavior are
transformed into precise functional requirements. Scenario
construction and analysis may aid stating the nonfunctional
requirements, such as performance and reliability.

Term __Dation criterLia: The requirements should be complete
(relative to the goals and scenarios considered) and consistent.
On termination, the requirements should be traceable to the goals.'..

* Tool support in 1990 RET: The Analyst tool enhanced with DBMS-
based mechanisms (see "Goals Synthesis from Wish Lists").

Tool support In 1995 RET: Evolutionary Track: (See "Goals
Synthesis from Wish Lists".)

* Formal Language Track: because goals and requirements are stated
in the same formal language, no language change is Involved in

%. going from goals to requirements. Instead, there Is selection and
refinement of goal statements via a methodology for formal
requirements synthesis.

0
"-" Lt_jc_AoJys Goalsan ReaujIrments

Static analysis can reveal some types of Inconsistencies and
incompleteness. If goodness meta-models (e.g. user cognitive

* C-6

-,- . , - , , . "" "- -r' .

0!

VL

models, models of safeness) exist, they can be employed to derive
properties (e.g. quality of cognitive support, degree of
safeness).

When invoked: The principle to be followed Is that any kind of
analysis that can be done automatically should be done as early as
possible. Whether to do a manual analysis requires consideration
of the Implied value added and effort required.

Tool support in 1990 RET: The Analyst supports some consistency
and completeness checking. Almost all other static analysis on
goals and requirements will be manual.

Tool support in 1995 RET: Evolutionary Track: Consistency and
completeness checkers based on: (1) a controlled natural language
representation of requirements, and (2) domain knowledge.
Predictive and quality metr!cs and tools for quality assessment
and critiquing.

Formal Language Track: The use of a formal language implies that
statements are formally analyzable and that proof techniques can

'N be used on the underlying predicates to determine things that are
%" subsumed and incompatibilities.

Dynamic Analysis

Dynamic analysis helps one to understand how completely and
correctly the requirements address a stated concern (e.g. a
reliable Interface to a set of sensors, or operator training).
Relevant requirements are selected and a walk-through Is

,conducted. Appropriate tool support and animation would be very
helpful.

".. When invoked: When examining requirements for goal and wish
coverage or for considering spontaneous or new concerns, such
analysis Is appropriate.

• ToL-.upport in 1990 RET: The Analyst tool will support an
automated walk-through of requirements (i.e. an analysis of

-' dataflows through the various user viewpoints which Interact with

the target system) and animation of requirements (i.e. direct
execution of user or system actions given an Initial state and

some Inputs).

Tool support in 1995 RET: Evolutionary Track: An animation-based
dynamic browsing capability: (1) for analyzing requirements
against domain knowledge, and (2) for analyzing requirements
interrelationships.

* Formal Language Track: Nothing beyond the Evolutionary Track
approach is planned.

C-7!
% WIN'

'I.

Candidate Solution Arch itecture Synthesis

There are different ways to partition the target system into
parts. Different resources can be selected, and different
resource utilization strategies can be used to control access to
the resources. Thus the principal activity is making design
decisions.

Termination criterla: There are different reasons for
synthesizing solution architectures. These lead to different
termination criteria. If the reason Is: (1) Prototyping - we
need enough architecture to produce the behavior to be

Investigated. (2) Estimating performance, reliability, or
development cost/risk - we need enough architecture to make the
relevant assessment. (3) Identification and definition of a
satisfactory solution approach - we need to define an architecture
which Is sufficiently complete to determine with high confidence
that the requirements can be satisfied.

*~_Tool upport in 1990 RET: The VHLL Prototyping tool and Rapid
Prototyping System tools will provide modest design capabilities
such as support for functional decomposition and allocation,
concurrent processing, and characterization of computer systems
and communication networks.

4..

Tool support in 1995 RET: Evolutionary Track: Minimal, although
use of predictive metrics with requirements might reduce need to
do solution synthesis.

Formal Language Track: it is possible that there will be a
capability to automatically suggest candidate solutions, but this
is a very speculative area, end Is not a focus.

After defining a solution architecture that produces or simulates
selected behaviors of interest, a prototype is derived and
exercised through a mixture of user-co,trolled and canned
scenarios. Thereby, an evaluation of the selected behaviors Is
elicited.

Termination criteria: The prototype must be sufficiently complete
for exercising. The exercising must be sufficiently thorough to

0 either validate the selected behaviors or provide a good idea of
what are the alternative candidates.

ToIQg_. nJQt MfJI __.P:I For 1988: Rapid Prototyping System
tools (RPS) for interpreting prototypes against canned scenarios;
the VHLL System Prototyping tools (VHLL) for executing prototypes

* that interact with users or simulations; and the Analyst tool for
scenario-based symbolic performance estimates. To prototype human
interfaces: especially RPS, but VHLL too. To prototype

functionality: VHLL. To prototype for performance: all tools.

C-8

KN V MV0% ~%

For analyzing results of prototype execution against a scenario:
each tool provides a specialized analysis capability. A database
will hold results and data management facilities will aid human
analysis.

Around 1990, these prototyping capabilities may be enhanced with
.nimation and with dynamic probes to determine coverage. There
will be a methodology, possibly metric-guided, possibly based on
CORE, guiding when to prototype.

Shortly thereafter, a knowledge-based simulation system will aid
building adaptive scenarios that Interact with prototypes.

Tool support in 1995 RET: Evolutionary Track: Knowledge-based
aids for evaluation of prototype sensitivity complemented with:
metrics-supported analysis and a methodology for when to
prototype. A static coverage tool that analyzes the prototype,
determining what system parts are exercised by the scenario.

Formal Language Track: (1) Th- solution architecture Is the
prototype. When driven by a scenario, the prototype generates
behavior which is automatically checked for satisfaction of
requirements. The payoff from the checked prototype is this:
user-detected undesired prototype behavior Implies incorrect or
incomplete requirements. This helps the user carry out his role
of checking the requirements. (2) Machine-assisted, user-guided
generation of scenarios.

-na Pi.e rformance. Reb i I I ty. Deve I opmenftR s k

A candidate solution architecture is subjected to analysis, both
manual and automatic, to determine its operational goodness (e.g.
implied performance and reliability) and development goodness

"" (e.g. implied cost and risk).

When Invoked: When a candidate architecture Is sufficiently
complete to produce a high-confidence analysis.

.TooI support in 1990 RET: The Rapid Prototyping System aids
construction of usage-sensitive performance models.

Tool support in-1995 RET: Evolutionary Track: Metrics and tools
for estimating cost, time, and risk from solutions, even if
solutions have a distributed or knowledge-based architecture.
Tools for fault-handling and reliability analysis.

Formal Language Track: The use of a formal language provides a
formal basis for deriving estimates of what the operational
performance, etc., will be. Otherwise, does not offer much beyond
the Evolutionary Track.4.

C-9
6,ell

. j . .. % 40- 3-,%

Requirements Evaluation bnd ReformeudatJon

Performing dynamic analysis, rapid prototyping, and analysis of
operation/development implications leads to Insights on
requirements correctness and alternatives. These insights suggest
a new/alternative version of the requirements. Such a version is
constructed.

When Invoked: After sufficient anblysis of the current version
makes clear the need for a new/alternative version.

Tool support in 1990 RET: Various analysis tools and a CORE-based
methodology.

Tool support in 1995 RET: Evolutionary track: Various analysis
tools and a met;,odology, possibly metric-guided, combining
predictive metrics with prototyping.

Formal Language Track: support for determining whether the
requirements are satisfied under all possible conditions

. ,(scenarios driving the solution architecture). Such support will
be based on a statistical and symbolic analysis of the behavior
space.

,-

ExI Testbed

In the PET there will be limitations to the amount of effort that
J' can be expended in a particular requirements engineering exercise.

There will be a list of specific objectives to be attempted in the
exercise. These are documented in the Engineering Context
Descriptions, which controls the duration of the exercise.

Presumably there are some post-exercise activities: (1)
Documenting the objectives, constraints, and results. (2)
Evaluation of tools and techniques used: documenting each tool
and technique, the context of its use, problems encountered, and
the character of success.

,'pl support in 1990/1995 RET: See "Measurement of Process and
"4" Pre. 4uct" below.

Measurement of Process and Product

This activity does not explicitly appear in figure 3.1-1. As in
the case of the "Engineering Context" cloud, it is a meta-level
activity. As a key objective of the RET Is the evaluation of
tools and techniques, this activity is included here.

* RET activities must be careful ly planned, metered, and measured toassist making an assessment of relative tool/method strengths.

Thesc assessments are then used to guide development of new tools
and techniques.

C-10

I,. , . ----- ---

4--

Tool support in 1990 RET: An Instrumented testbed of Integrated
tools will support relative effectiveness measurements.
Prototyping results will provide basis for making such
measurements. A testbed methodology will direct RET
experimentation.

Tool support In 1995 RET: Evolutionary track: Metrics will
provide an improved empirical basis for determining effectiveness.

Formal Language Track: as more of the requirements engineering
process will be formalized, It will be easier to develop
appropriate measures of the leverage provided.

C.3 Expression of Inlfrmation In the 1990 RET

In this subsection we discuss the kinds of information that 1990
formalisms will help to express.

, Problem Domain Information for Deriving Goals & R _qremenDt-

We call information employed In deriving Goals and early
Requirements "problem domain information". We give below a
general characterization of what problem domain information is
formally capturable In 1990.

Extrapolating on envisioned 1987 Analyst formalisms and
functionality, the following problem domain information can be
semiformally expressed:

Prob Iern Doma i n infcr mrrI Qn: .NOt tQJn feprpg:

* For each agent/role:
Role description English
His interaction with system Dataflow
His Actions: (Inputs/Outputs,

From/to whom) Structured English
* Control constraints on actions Dataflow

Activity Attributes: Structured English and as

Dataflow annotations
Duration, Frequency
Operational Cost
Usage statistics

* For each Datum produced: Structured English
Principal structure

Datum Attributes: As annotations
Size
Persistence

C-11

,, 'a,~P '' ,~ %.# . % .(f % '

IL o~l oc I

0

* Major transaction Dataflow
Typical usage
Stressful usage

Transaction Attributes: As Dataf low annotations
Durat ion, Frequency
Usage Statistics

Such problem domain Information:

" Documents the environment the system resides In. Documents
system activities.

* Collected from various sources (mission users); they must
validate it.

* Aids Identification of performance and reliability stress
points.

The 1990 RET will aid expressing and formalizing this Information.
There will be checks for consistency and completeness. Tools will
be able to manipulate such information, e.g. for performance
prototyping: estimating target system performance on the basis of
estimated workloads.

Information on Target System Functionality and Interfaces for
Deriving Rleaulrements & Solution architectures

Extrapolating on envisioned 1987/88 VHLL Prototyping tools and RPS
functionality, the following can be semiformally expressed:

I nJnrLat!on: Notation for expre _j no .

a..... 1. System Functionality
* Functionality and a * VHLL: Specification by

solution architecture Nested Dataflow and
that realizes It Reusable Modules

2. System Interfaces
* Graphics, dynamic displays * RPS: Screen contents have

Iconic representation
also maps, trajectories

* Interface & Functionality Descriptions:

* Created by engineer for mission user(s) experimentation,
comment, and validation.

* Exercised partially or completely against scenarios developed as

indicated below (under "functional model")

Information on Target System Design and Resource Utilization for
Apalyzing Solution architectures

% C-12
0

.,~ a ~ ~ ~ *~ ~>%

"I.

Currently RPS supports construction of four types of performance
models. What makes these RPS models different from VHLL
prototypes Is that instead of associating executable code with a
target system function, a resource utilization profile is

. associated Instead. Against each model, scenarios can be
* exercised and performance data collected. The models are:

* Model of Analyst - Represented as a set of analyst strategies.
A strategy is represented as a set of analyst-dependent
procedures. Each procedure is represented as a sequence of
screen interactions. Each interaction Is represented as a
time delay and a target system task; the basis for
determining the resources that the interaction consumes.

Performance can be measured against workstation and

processor characteristics; also against analyst
characteristics.

* Model of Processor - The processor Is represented as a network
of computational resources: processors, devices, and data
lines. Performance characteristics that are represented
include: throughput, capacity rates, transmission
characteristics.

The network is exercised against workload arrival patterns.
A workload is represented as a sequence of tasks that
contend for specified processor resources. Performance can

.5/ thus be measured against processor/device/operating systemcharacteristics.

* Model of System Function - The target system Is represented as a
set of stimulus-thread pairs; in which the stimulus

'. determines the thread. Each thread is represented as a
4', schedule of logical system functions, e.g. database

retrievals and input/output operations. To stimulate the
model, a scenario can be defined. A scenario is represented

0 .as a sequence of events. An event Is represented as a set
0 of stimuli.

- The system is exercised against the scenario. Performance
can be measured against target system functions

% characteristics.

* * Communications Model - A communications system is represented as

a network configuration supporting message traffic.
Performance characteristics that are represented Include
node capacities and flow rates.

The model is exercised against a message stream. Messages
are represented as a source-destination pair. Performance
can thus be measured against communications network
characteristics.

C-13

i .5 . % . l . % " - -% - -. - . - -. -- -" . . -- -.1" % ". -. . -. "," % % %L %' "

.F5 -.

N.

C.4 General Observations

Updat ing Goals 0

Though wishes will change with time, the model indicates there
will be no attempt to update the original goals. This Is because
the goals become folded into the Initial requirements, and they
get updated there during successive cycles of requirements
evaluation. The preferred way to effect permanent updates is thru
changes to the domain models referenced.

Flexibility and Generallty of the Model

The model Is not intended to favor a particular tool or technique
, within generic categories of support, e.g. prototyping. It Is
• therefore largely independent of any specific tool or technique.

Nor Is the model Intended to favor a particular order to the
requirements engineering activities. Thus, for example, an
interface can be prototyped before performance criteria are even
established In the requirements.

With a very few exceptions (namely, "Testbed effectiveness"
information, "Exit Testbed" and "Measurement of Process and
Product" activities), the process model is quite generic and is
applicable to requirements engineering In general.

Ambiguity in Definitions

The concepts of goal, requirement, and solution architecture lie
In a continuum and defy precise separation; particularly in
practice, where such descriptions intertwine. They are more
easily characterized thru relative comparisons.

Bounding of the Solution Space

There Is a phenomenon called "unexpected bounding of the solution
0. space", In which the mechanisms used to express requirements

unexpectedly eliminate some solutions from consideration. The
phenomenon Is considered In greater depth in Appendix F.
Requirements engineers need to be aware that the form of
expression they employ, their choice of methodology, and their
previous experience may bound the solution space In undesirable

. ways.

In the long term, requirements engineers should be given tools to
help detect Implicit assumptions that bound the solution space.
Such tools would be categorized under the static analysis activity
In section C.2.

C-14

)OL~
L ,0,

"" ""% % % """" " " ' '' , " % ' ' ="

F OW

APPENDIX D: REQUIREMENTS ENGINEERING TESTBED (RET) TOOLS AND
ARCH I TECTURE

D.1 Tools Currently Under Development

These are the tools currently under development by RADC:

"Analyst" developed by Imperial College and subcontractor
Systems Designers,

"RPS" (Rapid Prototyping System) developed by Martin Marietta
Denver Aerospace, and

"VHLL Prototyping Tools" (VHLL = Very High Level Language),
developed by International Software Systems.

Analyst

Goal: guide the requirements analyst in the collection,
structuring, and validation of Information about target system
roles and context. Result: a dataflow specification of system
requirements organized as a functional hierarchy of viewpoints
which represent the processing requirements of the target system,
its users, and other systems with which it interacts; performance
and reliability are partly addressed.

Approach: the Analyst supports the CORE method by enforcing CORE
rules that guide and track the requirements analyst in the use of
CORE diagrammatic notations in the statement of system needs and
context.

The CORE method consists of rules and procedures that guide the
requirements analyst in: factorizing system needs and context
into "viewpoints", documenting semifornally each viewpoint, and
then identifing performance and reliability needs through
consideration of transactions or scenarios that may cross several
viewpoints.

Each CORE viewpoint is documented In terms of Interactions
(actions, data produced/consumed) with the target system and other
relevant agents. A viewpoint is also produced for the target
system, which documents the functional requirements; as opposed to
the other viewpoints, which model expected system usage and the
environment of the target system.

Features:
* word processing support is a key component,
* extendible rule base, heuristics,
* incremental consistency and completeness checking, .

* Macintosh host and Maclntosh-style graphical interface,
* descriptions in terms of directed graphs with textual

labels and annotations.

D-1

%I

Future research to be pursued (long-range enhancements):
* Construction (through graphical editing): Much leverage

through reuse. Reuse Involves finding templates, and
Incorporating (Instantiating and/or editing) them.

* Analysis (unsolicited guidance): Need strategic help and
active guidance (CORE rules provide mainly tactical
guidance). Need better sensitivity to development history
and style.

* Navigation & Animation: Support arbitrary browsing (i.e.
transitory structuring of the navigational route).
Support walk-throughs and direct execution of operational
specifications. Support diagrammatic interactions with
animation. Support rapid prototyping.

Database implementation: exploits Prolog mechanisms for tuple
definition and pattern-matching retrieval. Performance problems
are main driver for future enhancements.

40

Goal: Provide the Air Force mission user and acquisition engineer
with a system requirements validation capability based on rapid
configuration of user interface and system performance prototypes.
The prototypes are constructed through a minimum development of
new software and a maximum reuse of off-the-shelf graphics and
simulation modeling packages. The RPS provides access to the
modeling approach natural and appropriate to the specific user,
and orchestrates the execution of the various models that are
produced.

Approach: The following models can be produced:

* Mission analyst workstation model: helps assess performance
*. impacts that alternative workstation technologies and

procedures have on the analyst mission.

* Processor model: helps conduct in-depth resource utilization

studies on a contemplated architecture under varied
work loads. A basis for assessing system performance under
various scenarios and Identifying resource-critical
conditions.

* Function model: helps estimate system performance given an

allocation of system functions to system hardware and
software resources.

* Communications model: helps assess performance of

contemplated network under simulated message traffic.

Features:
* RPS interface and master control hosted on Apollo

D-2
0

--

workstations,
* Color and dynamic graphics (animation).
* The following things can be modeled and maintained by RPS:

target system dataflow
target system database
target system knowledge base
display Interfaces
processor and communication architecture
scenarios that stress the entire target system, just
the communication network, or just the mission of one

Aanalyst

Future research to be pursued (long-range enhancements):
* Addition of new models.

Database implementation: The RPS databases reside on different
systems: Apollo workstations, the Vax with VMS, and a Prolog/Lisp
processor. No attempt will be made to integrate the various
databases. The RPS user can access these databases:

* D3M database (Apollo) - Used to model target system
functionality and control. Features: menu-driven schema
definition, report formatter, and a forms generation
package supporting the interactive creation of records.

* KEE database - builds/maintains knowledge bases in support
of requirements analysis of decision support systems.

* Switch table database - maintains code fragments which
associate functionality (e.g. database retrieval,
simulation model execution, dynamic graphics) with a
selected region (e.g. graphic depiction of a system
component, portion of a user interface prototype) of the
display.

~." * Support tools database - word processor, spreadsheet,

report generator, and version manager for actual
production of requirements documentation.

VHLL Prototyping Tools

*1 Goal: Provide a capability to rapidly and minimally describe a
program that executes certain target system function(s).

* Approach: a VHLL (Very High Level Language) Is used for
specifying prototypes. The VHLL prototyping environment provides
support for: reuse of application-specific modules, rapid
modification, and collection of performance statistics during
execution. Both object-oriented and stimulus-response
specification approaches can be used.

Features:
* Hosted on Apollo workstation.
* A browser interface to prototyping and project data.

D-3

'.t0"'

Instantiating mechanisms facilitate reuse.
* Option for graphical entry of VHLL specifications.

Future research to be pursued (long-range enhancements):
* VHLL: enhance with a richer standard set of data and

function operators.
* Prototyping environment: embed within a general design

database In which programs would be directly synthesized.
Tools, display would be initiated by database activity.

Database approach:

* Database: will maintain function Interface/body

descriptions, data types, prior designs, classifications,
queries.

* Data model: an object-centered data model supporting CAD

r ,ds for dynamic metadata and data with complex attribute
values. Query language: selection allows navigation over
relationships. Support for updates thru views.

* Design management: maintain consistency of designs and

tracks dependencies. Versioning: will be fine-grain;
" ~2 there may be multiple active versions. Configuration

management to manage consistent assemblies of objects.

* Strategy: Utilize commercial CAD database. Database is
system focus for all synthesis, analysis activities.

D.2 Loose Coup l lg Strategy

A very loose coupling between the contractors' tools is feasible
within the time and scope of the current tool development efforts.

Loose coupling means that the data produced by one tool can be
input to another with only minimal (perhaps no) effort and minimal
(perhaps no) loss of information. Loose coupling will allow the
testbed user to take (say) a functional dataflow representation
created by one tool and provide It as input to another tool.

% Loose Coupling game plan:

(1) Each contractor will provide an object analysis on his
tools, Identifying objects, attributes, relationships,

* operations, and aggregation operations (building bigger
objects).

(2) Identify smnticg= in the different object analyses. (A
semantic gap between two tools indicates precisely what kind
of information they cannot share and which must be lost in

* moving shared data between them because of a lack by one of
JN the tools of the necessary semantics for representing the

information.) Where few gaps exist, produce an object
schema overlapping all three tools.

D-4

NI0W

(3) The common schema will be the basis for determining the kind

of file conversions that must be provided, In order to move
information successfully from one tool to the other.

(4) Other support:
* for file transfers between Macintosh (hosting the

Analyst) and the Apollo (hosting RPS, VHLL tools).

a. * some configuration/version management assistance across

the tools Is desired.

D.3 Integration Strategy

To significantly reduce the amount of effort required to achieve
integration, the panel defined a strategy of things to be done in
the very near term by RADC and Its tool contractors. The strategy

4 is to: (1) Define standards for the final integrated RET of 1990.
(2) Make current tool contractors aware of these standards to

W influence the design and Implementation of their tools. (3)
Encourage and maintain informal communication between the tool
contractors and RADC to help track problems associated with the
use of these standards.

To achieve (1) and (2) above, all current tool contractors were
Invited to a meeting of the panel to help define the standards.

a Conclusions are presented below. To help achieve (3), contractor
meetings to discuss database issues have been recommended to begin
in early 1987.

Following the discussion on standards, the loose coupling plan (of
section D.2) Is contrasted with the Integration strategy.

User Interface Standards and Strategy

Assumption: If all current tool contractors can agree to a
4-; similar Interface style now (i.e. how to invoke tools, how to
* manipulate data), the later integration will be much smoother, and

In the Interim, users going from one tool to another will not have
to fundamentally change the style In which they access
requirements and tool functionality.

Current tool Interfaces: Graphical editing plays a key role in
• every contractor's approach to the tool interface.

Standards to be followed:

TM
(1) Macintosh (Apple) Style Manual documents syntactic

conventions for menu systems and supports the paradigm of
* direct manipulation at the Interface. Conventions outlined

in this manual are to be used by tool contractors to achieve
a common syntax to their menu systems.

D-5

0

.4; j- It

'.%

Standards desired:

(1) Paradigm of resource files (WindowsTM): conventions for
exploiting menus, dialogue boxes, Icons, and accelerators
for the purpose of creating programs with adaptable
Interfaces (i.e. without need of recompiling). .

(2) On commands: consistency of application-specific windows
(e.g. the command bar) and the commands (and their options)
Invokable within them (e.g. same file operations and
operation names).

(3) On "gestures": consistency in the implicit ways of getting
things done (e.g. expand/contract boxes).

(4) Standardization vehicle: Systems Designers can forward 4

.5 appropriate Analyst code/conventions to the other tool
contractors as a guide.

The panel's user interface integration strategy is to have a
common editor/browser interface to the objects, through which
different actions can be selectively Invoked. This Is consistent
with the panel's recommended RET architecture.

"1* Database Standards and Strategy

Assumption: The different contractors are developing tools that
* need to access (share) the same data.

.1

Thus standards are needed for:

(1) Data Model.

* How is the data structured? What part is formal structure
S (e.g. arcs), and what part is text (e.g. nodes).

* How Is the data accessed? Need standards on the query and

programmatic Interfaces.

* What atomic data and database operations on these data are

assumed? Example: establish/delete node/arc.

* Associative retrieval: need standards on how to navigate
associations and whether it Is permitted In both directions.0

(2) Schema.

Should the schema Itself be represented In the database so

that tools can operate on it (e.g. to track inheritance)?
,., What are the performance Implications of this strategy (i.e.
* each data access requires a schema access)?

0-6

,

,. ,

(3) Rules and Inferencing.

Types of rules: (1) design constraint rules to maintain the
consistency of the objects being built, (2) transformation
rules which permit derivation of implied Information from
multiple relationships in the data, and (3) rules as a form
of program encoding (capturing programs In an incremental
and modifiable way).

Rule representation: How should they be declared? Should
they be embodied in the code or represented In the database
to be manipulated as data?

* Support which: derive-as-needed or truth maintenance?

(Given rule A,B --> C, and A,B, do you assert C and store it
In the database or derive It as needed?)

* How to turn rules on/off?

(4) Triggering.

When a database update matches a particular pattern, dQ some

processing. Example: update screen as result of a change.

* Similar issues as in "Inferencing" above.

* Two different notions of "transaction":

** atomic transaction: "batching" all updates to avoid
triggering rules until completion, and

** interactive transaction: updates are Immediate, but if
an abort occurs before completion of the transaction,
the database is restored to the pre-transaction state.

(5) Import/export facility.

0 An import facility allows inputing data produced by another
9 tool in some foreign format. An export facility allows

taking out data In a format (e.g. ASCII) that can be used by
-* other tools.

Problems and future research issues:

* Limited database size: Artificial Intelligence databases
-' • are capable of handling small numbers of facts (about 30K).

How does their performance scale up?

* Performance:

** Strategies: Cache. Optimize for retrieval
operations. Limit size of the problems to be

0-7

0%

IT M

addressed by the tools (i.e. In the context of RET
experiments).

." ** Performance problem: The problem of determining the

context in which to bring something in from disk is
exacerbated by the large number of rules. Inheritance
mechanisms and having the schema represented In the
database further exacerbates this problem.

Loose Coupling (section D.2) vs. Integration

Availability to testbed:

Loose Coupling: Early 1988, with nominal effort.
Integration: 1990, involving considerable effort.

SDegree of common data representation:

Loose Coupling: Perhaps none, file conversion probable.
Integration: Common representation for all data shared.

* Storage/retrieval thru a common database.

Shifting between tools:

Loose Coupling: Limited In frequency, as conversion
results in some loss of semantic content and affects
performance.

Integration: Frequent. The RET user will be able to take
full advantage of equal and uniform access to all tools
and objects, yielding, for example, improved prototypes
and increased productivity.

D.4 Long QRe Arch-itecture

We present below a long-range (at least ten years) software
architecture for the RET. The architecture Is made up of three

parts: a user Interface (the ,,RET editor"), a database (the "RET
* database"), and a language (the "RET language").

The RET architecture consists of:

.T editor - the user Interface to all documents and tools. The
interface can be: customized (e.g. domain-specific, dialog style,

* graphics vs. text), syntax-directed, and tolerant to ambiguity.
Capabilities for:

(1) Browsing (finding) relevant objects.

(2) Viewing (selection/presentation) objects.
0

(3) Annotating objects with comments, questions, etc.

4.- (4) Invoking all RET tools.

0-8
W D-"i 'r'k

, .**

(5) Multiple windows/contexts/user access.

(6) Direct editing of relevant objects, WYSIWYG style.

These capabilities require close coupling between the RET editor
- and RET database.

SD b - the common repository for all requirements-relevant
Information, all RE tool artifacts, including evolution.
Features:

(1) Object definition facility, based on the RET language.

(2) Query/update interface, supporting associative retrieval.

(3) Rule-based architecture. Provision for defining rules to
obtain consistency, effect-propagation, and automation.
Is fundamental to long-range RET goal: a WYSIWYG sup-
pressed-tool interface, in which tools that process

* objects are directly invoked by state changes, as
4. indicated by the rules.

(4) View management. Support for view customization.

(5) Performance scales with size well; simultaneous access.

(6) Multi-language: available to all RET tools.

.ET Lc.& - a single formal wide-spectrum language for
expressing requirements, specifications, scenarios, and domain
definitions. Goals and partial descriptions are given formal
semantics. Support required:

(1) customization of the user interface to make the language
.. ,. usable to a broad user class (RET editor),

(2) support and tracking of Incremental modifications to
- descriptions (RET database and RET editor).

?--

4 4
4 .I

r r
*44r

%- S
V o4-- - -- -

APPENDIX E: DETAILED DESCRIPTIONS OF RET R&D ISSUES

This appendix contains detailed characterizations of all R&D
issues that form part of the RET R&D program.

RET R&D program research issues and development issues are given
respectively "RET Research Issue" and "RET Development issue"
characterizations, and have the following format:

which track (formal language vs. evolutionary),
problem description,
value in requirements engineering process,
solution approach,
5-year objectives,
10-year objectives,
risk (likelihood of results),
cost (degree of effort required),
contingencies (dependencies),
conclusion (recommendations), and

* author name (which panel members wrote the description).

Those issues considered to be the best candidates for funding were
also given "RET R&D effort" characterizations. An RET R&D effort
characterization has this format:

objective (what is to be accomplished),
scope (effort boundary, technical areas tc be addressed

and those which will not),
technical approach (how the objective will be achieved),
background (relevant terminology, reiated work toward

this effort's objective, etc.),
references,

duration (in months),
cost (in dollars)
deliverables (product and date (i.e. months from effort

start), and
roadmap (task schedule against 1986-1995 timellne).
S!

Costs include capital costs for equipment and resources. These
estimated costs reflect the panel perception that these R&D
efforts require the highest quality people and laboratories.

Section E.1 characterizes the R&D issues addressed in the
* evolutionary track. Section E.2 characterizes the R&D issues

addressed in the formal language track. As all formal language
track issues contribute to the same goal, namely the formal
treatment of requiren;ents, a "research issue" characterization and
rcadmap is given for the whole track; individual issues are only
given R&D effort characterizations.

E- 1

0N

E.1 Evolutionary Track

E.1.1 Goaiand Requirements Synthesis

RET Research Issue. Evolutionary Track.

PROBLEM DESCRIPTION:

The synthesis activity takes unstructured textual expressions of
need as inputs (often conflicting with each other) from different
sources and produces as output a formal structuring of the input

texts (which have been refined, made feasible, and conflicts
resolved). Synthesis is a complex activity, often a group
activity, and for the foreseeable future, the challenge Is one of
supporting manual synthesis.

VALUE IN REQUIREMENTS PROCESS:
e

Explicit requirements statements have a critical communication
role between and among system definers, designers, and reviewers.
They form the end product of the RET activities.

SOLUTION APPROACH:

(1) Reuse mechanisms: The RET analyst will need to access,
modify, and incorporate existing requirements descriptions. This
requires mechanisms for browsing previously-synthesized
descriptions, and composing them Into the new synthesis context.

(2) Viewing mechanisms: As synthesis is largely manual, the RET
analyst will need to see all relevant information (mission
viewpoints, domain information, and related descriptions). Some
(possibly most) information will be developed using domain-
specific terminology and notations. Controlling Information
changes and presentations thru different perspectives of a group

* is largely a problem of view management.

(3) Syntax-directed editing mechanisms: Syntax alds and checking
should be well integrated with editing, supporting the synthesis
of the formal parts of goals/requirements descriptions.

5 YEAR OBJECTIVES:

Provide an RET database of appropriate data definition,
query/update Interface, and view management facilities.

E-2

10 ,%

Enhance the Analyst: Research, develop, and integrate better
syntax-checking, view management, and reuse mechanisms; base on
top of the RET database.

10 YEAR OBJECTIVES:

Improved classification of requirements, domain information,
etc., Improving their ease of accessibility.

Develop multi-language synthesis capability: enabling a
heterogeneous group of people to develop portions of the same set
of requirements utilizing different domain languages.

RISK:

To the extent the objectives can be achieved thru database
technology, there Is a high probability of success. Otherwise,
there Is significant risk.

COST:

0 1-2 man years for 5-year objectives. 2-3 man years for the 10-

year objectives.

CONTINGENCIES:

Finding an appropriate RET database In less than 5 years.

CONCLUS ION:

To the extent that the viewing mechanism can be provided by a
DBMS, it should be brought into the RET with no specific research
funding. Where new research is needed, it is not clear that the
technical opportunities are well understood, so funding cannot be
recommended at this time.

AUTHOR NAME:

Michael Konrad, Terry Welch.

*

E-3

I%
So -*

a W ~ ~ ~ ~ . w

bRT

E.1.2 Domain Models and Information

RET Research Issue. Evolutionary Track.

* ,PROBLEM DESCRIPTION:

Domain information can be: (1) persistent - useful to more than
one project and/or for long periods of time, and (2) a basis for
decisions - key assumptions. But domain knowledge is often in
people's heads (e.g. mission specialists). Clearly, collecting
and organizing domain information and then making that information
accessible to both RET engineers and tools presents enormous
challenges and opportunities.

- VALUE IN REQUIREMENTS PROCESS:

The most significant role played by domain Information is as
* assumptions or facts about the environment in which the target

system Is to reside (e.g. user characteristics and expectations).

SOLUTION APPROACH:

The technical approach must focus on the use of domain knowledge
In requirements engineering; much effort is already being spent on
the general problem. The effort must determine: (1) what domain
knowledge is used, (2) how It Is used (for what purpose (including
by tools) and with what frequency), and (3) how it changes (nature
and frequency of change). In other words, build a usage model of
domain knowledge in requirements engineering. Only then can a
practical structure and representation for domain information be
selected.

Ways of 6etting new knowledge Into the model (knowledge
acquisition and classification, domain-specific

. lanni, e/'terfaces) and getting it out (interfaces with tools,
• dof expert critiquing, and domain-specific language/interfaces)
,.- w e tailored to these results but need Investigation. It is

not yet c ear which input/output approach will provide the best
leverage. An input/output approach will be recommended at the

'C1 conclusion of the study described In the preceding paragraph.

0 5 YEAR OBJECTIVES:

Selection of domain model structure:
* structure driven by key requirements engineering concerns
* goals/requirements/solution architecture descriptions and

Sw

E -4

0%

IK

- \. their rationalizations can reference
* basis for recommending input/output approach to getting

domain information In/out

Build models of one or two key domains

Adapt tool interfaces to permit access

10 YEAR OBJECTIVES:

Enhance RET tools to better Interpret and use domain knowledge.

Build a domain information Input/output mechanlsm(s) out of some
combination of:

* classification scheme for automatic acquisition,
" domain-specific language/interface,
* domain experts that can assist the engineer In:

eliciting requirements relevant to that domain and
In the use of domain krowledge

Augment/revise domain model structure to capture key domain
* information required by new tools.

RISK:

Low to moderate risk. Understanding the general role of dcmain
knowledge in requirements engineering, both present and future, is
key to success. Failure to understand that role may lead to
capture of Irrelevant Information. New tools may out date the
usefulness of the knowledge represented. Domain knowledge is also
subject to change with Improved theories. Automatic acquisition
Is largely a classification problem, and poses some significant
risk.

COST:

Degree of effort required: 5-year objectives: 4 man years for

first two objectives, 3 man years for last one. 10-year

objectives: 10 man years.

CONTINGENCIES:

Tied to evolution of tools and domain theories.
I

CONCLUSI ON:

The domain model approach offers much promise, even if automatic

domain knowledge acquisition should prove very hard and therefore
remain significantly manual. Recommend funding.

AUTHOR NAME:

Michael Konrad, Terry Welch.

E-5

....-. L

RET R&D Effort

,ISSUE NAME: Domain Models/Information

" OBJECTIVE:

~Define a domain modelilng technology:

i (1) helps organize domain information into a model,
(2) for access by tools, and references by Goals and..
Requ irements descr ipt ions,

. (4) supports domain model evolution.

.;. Interface tools to domain models. Enhance tool use of domain
*- i nformat ion.

i SCOPE :

Technical areas to be addressed: Domain models, Knowledge
i acquisition. However the technical approach is not to advance

generic technologies in these areas but to develop new
technologies addressing the most pressing problems in the use of

<.. domain information in requlrements engineering.

'/ -:-,TTECHNI CAL APPROACH:

"hi Determine the usage of doma.in information in requirements

* engineering as a basis to identifying where the best leverage lies
.*. (what to capture and how to structure If for later access). Build

" dcmain-specific languages and/or interfaces for the most common
iii:I domain(s) to aid in capturing the domain information relevant to

• .. an application. Address relevant database issues: synergies
- between different domains, aggregation and classification,

'.2 versioning, and evolution. Enhance appropriate tool Interfaces.
, . Investigate role for expert systems that use domain information to

help elicit and validate requirements.

* BACKGROUND:

• The "Analyst' I], a requireients engineering tool under
. -. development by Systems Designers (an effort sponsored by RADC),
:. .already provides a limited formal modeling capability. Imperial
, .-,.,.Col lege, under contract to RADC, Is exploring enhancements that
" .=. ,would increase the conceptual modeling capability of the tool [213.

* Several reports discuss the capture, use, and/or evolution of
- domain kncwledge In software-related activities: requirements

, engineering [3], automatic programming [413 Several reports
.< discuss the development of tools to aid encoding domain knowledge
,;, in the creation of "friendly" domain-specific interfaces and

* E-6

p.'
- - -. "-Lam

languages: for domain-specific requirements languages [5], and
for the construction of software systems [6] and [7]. Reports
that stress the role and value of domain modeling as a precursor
to the "requirements specification" include [3] and [8].

*i REFERENCES:

E1] M. Stephens and K. Whitehead, "The 'Analyst' - An Expert
Systems Approach to Requirements Analysis", draft.

[2] A. Finkelstein and C. Potts, "Structured Common Sense:
The Elicitation and Formalization of System
Requirements", draft.

[3] S. J. Greenspan, J. Mylopoulos, and A. Borgida, "Capturing
More World Knowledge in the Requirements Specification",
Proc. 6th Int. Conf. Software Eng. Also other papers by

J.. the authors.

[4] David R. Barstow, "Domain-Specific Automatic Programming",
IEEE TSE, November 1985.

[5] Alan M. Davis, "The Design of a Family of Application-
Oriented Requirements Languages", IEEE Computer, May
1982.

[6] James M. Neighbors, various Draco papers.

[7] S. Sundfor, two reports on application of Draco: "Draco
Domain Analysis for a Real Time Application ..." Irvine
TPs: RTP 015-016.

[8] Bartlett, Cherrie, Lehman, MacLean, and Potts, "The Role

of Executable Metric Models in the Programming Process",

Imperial College of Science & Technology.

DURATION:

Domain model ing Study 30 months
Select domain model & build example(s)

Interfacing tools to domain model 18 months
Enhanced tools (part of separate tool efforts)

18 months
Build input/output mechanism for domain information

30 months
Evolve domain model structure 24 months

*' COST:

Comain modeling Study .6 million
Interfacing tools to domain models .45 million

(attached to "Tools Integration contract")
Enhanced tools .45 million

(attached to "Tools integration contract")

E-7
0!" ", .. ","- 'W", - "

Build Input/output mechanism: .75 million
Evolve domain model structure .3 million

DELIVERABLES:

A PRODUCT DATE (months after start):

Domain model ing Study
Domain Model Structure Design 18 months
Build example domain models 27 months
Domain Model Structure Final Design 30 months

(Attached to integration contract)
Design/deliver Interface to domain models 18 months
Enhance to better exploit domains 36 months

Build Input/output mechanism
Design 18 months
Del ivered code 30 months

Evolve domain model structure
Revised Domain Model Report 16 months

* Design and delivered code modifications 24 months

L
=
4 .4.

0

E-8

,j4j

P..,

-J

nCi) a:

D LL

w -w

z wl
1~z 00

-j

00
z 0I

z .
73 C)

0~

9 C/)
<C,*

E-9-

0l

E.1.3 Reaulrements - Static Analysis

, .~ RET Research Issue. Evolutionary Track.
'. .

PROBLEM DESCRIPTION:

Analyze the requirements without executing a prototype of the
solution. Provide checks for completeness and consistency.
Animate the requirements.

VALUE IN REQUIREMENTS PROCESS:

Requirements analysis at an early phase avoids difficulties
associating requirements with solutions and reduces the need for
scenarios. Static analysis removes Inconsistencies at an early
stage In requirements engineering.

SOLUTION APPROACH:

Convert the requirements to a controlled natural language. (A
near English-like language with a restricted vocabulary). Check
the expressions in this language for consistency and completeness.
Through a domain-specific meta-knowledge base question untestable,
contradicting or redundant requirements. Animate the requirements
by allowing editing based on graphical representations of the
controlled natural language expression organized along differing
categories.

5 YEAR OBJECTIVES:

A*. Develop a controlled natural language and accompanying meta-
knowledge base.

10 YEAR OBJECTIVES:

Continue 5 year development with the addition of user Interfaces
and analysis tools.

.-, RISK:

0 Excellent chance of results.

COST:

6 man years for the 10 year objective.
man years for the 50 year objective.

E-10* * ,.,
"iW V

CONTINGENCIES:

Dependent on controlled natural language.

CONCLUSI ON:

Fund research at a low level. Not top priority.

AUTHOR NAME:

Stephen Sherman

E-1

U-"

'4.'

', "..

-,.,:"

0!-

M[E1

~5~.1

RET R&D Effort

ISSUE NAME: Requirements - Static Analysis

OBJECTIVE:

Provide tools to analyze requirements without executing a A.

prototype of the solution.

SCOPE:

The effort Is bounded by the need to formalize the requirements
language. As more semantic and syntactic restrictions are placed
on the requirements, we approach the concepts of the formal track
and may borrow from the formal track effort.

TECHNICAL APPROACH:

-: Provide the minimum formalization necessary to carry out the
solution approach. If the funding for the formal track Is not
timely, this effort may provide a start on the formal tack.

BACKGROUND:

The relevant technology Is the theory of languages and logic

(consistency and completeness).

REFERENCES:

For animation: CORE/Analyst development system by Imperial
College and Systems Designers. For Control led Natural Language:
"Requirements for Mechanical Translation - Problems, Solutions,
Prospects" in Feasibility Study on Fully Automatic High Quality
Translation, (Stachowltz, Bar-Hillel, Winograd, Bob Simmons)
Austin, Texas, Linguistics Research Center, The University of

0 Texas at Austin, RADC-TR-71-295, 1971.

DURATI ON:

Controlled Natural Language (CNL) - 3 years

User Interfaces and Analysis (UIA)- 2 years

0 COST:

Controlled Natural Language (CNL) .9 million
User Interfaces & Analysis (UIA) .45 million

DELIVERABLE:

CNL Design 6 months
CNL Prototype 18 months
CNL System 36 months

E- 12

0 w , N d

%-

UIA DesIgn 6 months
UIA System 2 years

.1'E 1

%%.

3'.

NU

6

U'''

.J.:4

6
4.

6 _

F-

cr) 0
0) LL

LL

00

0 CC)

CCl

LL.

* z

Q)J

ooo

zz
0 cm

00U

E-14~

- E.1.4 Requirements Analysis Methodol

RET Research ssue. Evolutionary Track.

PROBLEM DESCRIPTION:

As a result of both RET experience and outside advances, new
N'q requirements analysis capabilities will be brought into the RET.

The RET requirements engineer will need guidance, e.g.
methodologies, In the intelligent application of these new RET
capabilities to solve his requirements problems.

VALUE IN REQUIREMENTS PROCESS:

Intelligent guidance in the application of new and better tools
and techniques will lead to automation of more requirements
analysis resulting in improved requirements and productivity.

, SOLUTION APPROACH:

The problem of giving guidance to requirements analysis activities
-. i will be attacked two ways.

In the near term, the CORE method wIll be extended to Include
guidance in the use of currently-planned tools (e.g. the "RPS" and
"VHLL Prototyping tools").

-' In the long term, the role of CORE in guiding requirements
• "analysis activities needs to be reexamined; other methodologies

should be considered. The selected methodology must guldn all
engineering activities that help effect analyses on requirements,
e.g. solution architecture synthesis to derive cost, risk, and

'" performance estimates.

5 YEAR OBJECTIVES:

Extend the CORE method:
* into solution architecture synthesis and analysis, and
* to provide guidance in use of RPS and VHLL Prototyping

tools.

• 10 YEAR OBJECTIVES:

Provide an RET requirements analysis methodology:
* structures analysis activities to meet RET user objectives,

E-15

.~~~~ % ~ ~ "

z~ ',pV Z" 'Z VP zoP z'' . Z VPV z ~ t .. %0"

* guides solution architecture synthesis, and
" supported by RET formalisms and tools.

RISK:

Moderate risk. Selection of the best methodology will be
A difficult because of the difficulty In determining the relative

-A effectiveness of tools and techniques.

*'., COST:

A. Degree of effort required: 5-year objectives: 2 man-years. 10-
:year objectives: 6 man-years.

CONTINGENCIES:

Knowing the good vs. bad tools and techniques helps one define a i
good methodology. Thus strongly dependent on success in the
"Testbed effectiveness" R&D effort. Testbed tools effectiveness

* measures must be developed and RET usage data collected both on
the tools and on the applicatlons and purposes of use.

CONCLUS ION:

Good guidance in the use of RET tools is a key to successful
requirements analysis. We recommend funding this effort.

AUTHOR NAME:

Michael Konrad, Terry Welch. 'A

IJ

' A.'

. °

S I

0i
E-16I

Ii•

RET R&D Effort

ISSUE NAME: Requirements Analysis Methodology

OBJECTIVE:

Provide RET users guidance on the use of new RET tools, through:

(1) Near term: extending the CORE method into strategies for
using RPS and VHLL Prototyping tools.

(2) Long term: select a methodology that directs all
engineering activities related to requirements analysis.

SCOPE:

* Technical areas to be addressed: Requirements Analysis,
Requirements Methodology.

TECHNICAL APPROACH:

Near term: Do (1) below. Then select those CORE steps that can
be made more effective through utilizing RPS and AND Prototyping
tools capabilities. Place hooks in the Analyst to Indicate when
to use these prototyping tools and pass data to them.

Long terms: Do (1), (2) and (3).

(1) Analyze each RET tool, identifying what it analyzes and what
is produces. Assess the utility of each tool by analyzing RET
tool effectiveness data If available.

(2) Identify a few candidate RET methodologies (in particular,
CORE); extend them to appropriately utilize the tools determined
in (1), identifying tool entrance and termination conditions.
Determine experimentally their relative strengths and weaknesses.
Select one methodology to be the "RET methodology".

(3) Build a tool that indicates to the RET user which RET tools
are appropriate at each stage (if more than one, what value and
effort are Implied), consistent with the RET methodology.

BACKGROUND:

K The "Analyst" [] Is a tool supporting CORE requirements
specification and analysis activities. It currently does not

0 address prototyping.

SREM [2] was an early requirements methodology. In a recent
evaluation [3], SREM was considered to be best used when defining,
correcting, or analyzing software specific requirements; I.e.

E-170.

~after the (traditional) system requirements analysis phase had
~been completed, and long after the conceptual phase (e.g.

L W , feasibillity assessment and trade-off analysis). The methodology
L , .proposed by this research would address all of these.

" ."REFERENCE:
C11 M. Stephens and K. Whitehead, "The Analyst - A Workstation

-'

for Analysis and Design", Proc. 8th Int. Conf. Software

Eng., IEEE Comp. Soc. Press, 1985.

[2 M. Alford, "A Requirements Engineering Methodology for Real
Tpme Processing Requrements", IEEE T.S.E. SE-3(1).

[3] A. Stone, D. Hartschuh, and B. Castor, SREM Evaluation",

Rome Air Development Center, RADC-TR-83-314.

i DURAT ION :

E eng ,IE Core mdp. oc.n Prss 1on8h.

ARE-E methodology: all analysis activities 36 months

"- " COST:

" Extended CORE: add prototyplng .3 million

RET methodology .9 milt Ion

* .'C. DELIVERABLES:

PRODUCT: DATE (months after start):

Extended CORE:
Report on adding prototyping 12 months
Delivered code:

Hooks in Analyst to prototyping tools 12 months

RET methodology:
* Report on RET tools:

Scope and Effectiveness 12 months
' Report on methodology comparison 24 months

Delivered code:
Indicates which RET tools to use 36 months

,.'T ;,,'

E- 18

0

*..... .. . ?,.,-..' -,>.. . "- "- - . . "- - "-' - . "IC'.-" " . ' ."- ' '.- ", - ,.'." ' ." , ,-

4,.

ULU

0

A 0~ 0
0

0
(NII

0~ 0
0 <

'00
00

a) zU
05

LU
1cc

0 EL

CS

4),

II

E.1.5 Dynamic Analysis

RET Research Issue. Evolutionary Track.

PROBLEM DESCRIPTION:

The dynamic analysis of requirements constitutes the most valuable
means for validating a candidate set of requirements. It provides
end users and system specifiers with feedback and allows them to
"exercise" certain characteristics of a proposed new system. This
early feedback will greatly enhance the quality and fidelity of
future systems.

VALUE IN REQUIREMENTS PROCESS:

As referenced above, early feedback on the validity and accuracy
of system requirements Is highly desirable. It will enable

* substantially more of the logical "What If-ing" that leads to
improved systems designs and Implementations. Early detection of
faulty assumptions and assurance that the requirements are clearly
and concisely represented will result in considerable cost and
time savings for major programs.

SOLUTION APPROACH:

This dynamic analysis of requirements Is clearly very open. A
number of capabilities are suggested. A user would clearly like
to be able to Investigate the cohesiveness and validity of a
candidate set of system requirements. The use and continued
development of rapid prototyping systems to study a system is
clearly a part of what Is required. Augmentation of initial
prototyping capabilities with the ability to "exercise" a proposed
system and study the interrelationships of its various
requirements is highly desirable. Packaging this type of animated
prototyping capability in a manner in which end users and their

* analysts can study a proposed system is the direction of most
promising pursuit.

Augmenting these prototyping capabilities with domain-specific
knowledge based concepts is a more long-range undertaking.
Developing techniques for representing and analyzing new system
requirements versus a known domain model and browsing through

pvarious Interrelationships could be very valuable. A phased
approach to this is suggested since there are clearly quite a few
aspects to this overall problem. The first phase of this activity
will be aimed at determining the best ways to capture and
represent the user's problem domain with suggesting approaches to

E-20

V W

its analysis. Following a go/no-go decision, much more effort
will be focused on building a more powerful browsing and analysis
capability. This advanced support system would allow the building
of much more complete user domain models and provide more powerful

A. "logical browsing" and analysis capabilities for more completely
validating end user requirements.

A central goal In all of these activities Is to provide a much
more flexible environment for specifying and analyzing higher
level requirements and specifications. By providing more rapid
and valid feedback at an early stage in a project vastly superior
systems can be developed with substantially less risk.

5 YEAR OBJECTIVES:

Develop general purpose prototyping capabilities that will allow a
user at a very high level to graphically specify a series of tasks

P1 and/or activities and some of their important interrelationships

and "execute" thru animation the flow of information and control
between tasks.

*" 10 YEAR OBJECTIVES:

Develop knowledge-based systems which allow end users and their
support specialists to specify attributes of their problem domain
and query a system which "exercises" queries about related
attributes and specifications for new systems. For example,
dynamic browsing is of the form, "I am a pilot charged with
carrying out a certain type of mission, what requirements might be
affected by this particular type of mission?"

RISK:

Rapid prototyping systems are becoming available already, thus the
risk associated with the 5 year activities seems quite minimal.
The longer range activities are much more questionable since they

really depend rather heavily upon significant advances in
* knowledge collection and manipulation.

COST:

Rapid prototyping and animation activities should be sponsored
with a 5 - 10 person year effort in the first 5 year time frame.

SI

An intelligent knowledge-based capability should be investigated
in phases to determine its feasibility and expected payoff. An
initial effort of 2 person years should be supported to be
fcllcwed up with a go/no-go decision for a subsequent 5-10 person
year effort in the 10 year time frame. (If something reasonable

* can not come from this level of effort - we are probably trying to
picneer the field too much.)

CONT I NGENC I ES:

E-21

N N-

• '" ; e" r < L ,,,,. "." ,<-,.'" -".. % , ,"."" '' "• "-

The prototyping activities are currently tied to various
representations and me'hodologles. Since it is not clear there %
exists any UNIQUE desirable methodology we should attempt to
develop tools that are adaptable to methodological changes. It Is
also clear that graphical methods will continue to evolve and we A
must be supportive of such changes as well.

As we look into more sophisticated knowledge-based approaches to
representing and analyzing high level specifications, we become
very dependent upon advances in the representation, collection,
and manipulation of these knowledge bases. We should focus on the
use of this technology rather than sponsoring its research
directly.

CONCLUSION:

Support for enhanced rapid prototyping is clearly doable and
valuable. Exploration of techniques for providing more user
"animation" types of capabilities in conjunction with rapid
prototyping is also highly desirable.

A phased approach should be applied to the longer range knowledge-
based type activities since their feasibility and payoff is not
yet clear.

AUTHOR NAME:

Leon G. Stucki

9.

E-22

0 %

'J U O

RET R&D Effort

ISSUE NAME: Dynamic Analysis

OBJECTIVE:

The objective of this research area is to develop improved
methodologies and tools for analyzing and validating system
requirements at a very early life cycle phase. Clearly the more
feedback, iteration, and analysis that can be performed within the
requirements activity Itself, the more cost and schedule savings
can be real ized.

SCOPE: Two types of activities are Included in this area.

The first involves the development of enhanced prototyping
capabilities. Most of the ideas involved here have In fact been
demonstrated to varying degrees already. No real surprises are

4 anticipated In their further development and application on this
effort.

The second focus area for research Is less well defined. Although
the desire to apply knowledge-based technology to this problem
appears useful, the practicalities of this technology have yet to.
be totally proven.

TECHNICAL APPROACH:

The proposed technical approach will be evolutionary in nature.
Initial emphasis will be placed on incorporating "known"
techniques and types of tools within a framework suitable for
requirements analysis activities. This framework will be

4. augmented with increasingly powerful analysis capabilities.
Hopefully, with time, "smart aids" will serve as guides to the
user in better representing and analyzing future system
requirements.

The application of dynamic analysis to requirements engineering,
as a general area of Investigation, Is clearly very open ended. A
number of capabilities are suggested. A user would clearly like
to be able to Investigate the cohesiveness (consistency &

completeness - validity) of a candidate set of system
* requirements.

Task 1:

The use and continued development of rapid prototyping systems to I
study a system is clearly the first task to be included.
Augmentation of Initial prototyping capabil!ties with the ability
to "exercise" a proposed system and study the interrelationships
of Its various requirements Is highly desirable. An Integrated
prototyping system will be designed and built Incorporating this

E-23

~ -0111M

4' animation capability and packaging It for use by end users and
their analysts.

Task 2 [Phase I]:

Augmenting these prototyping capabilities with domain-specific
knowledge-based concepts is a more long-range undertaking.
Developing techniques for representing and analyzing new system
requirements for a known domain model and browsing through various
Interrelationships can be very valuable. A phased approach to

V. this is suggested since there are clearly quite a few aspects to
this overall problem.

Task 2 [Phase II]

Thus, the second major phase of this activity will be aimed at
determining the best ways to capture and represent the user's
problem domain with suggested approaches for its analysis. A
moderate feasibility study and initial demonstration task will be
followed up with a go/no-go decision. Assuming a favorable
decision, a subsequent effort will focus on building a more
powerful browsing and analysis capability. This advanced support
system will support the building of much more complete user domain
models. It will also provide more powerful analysis and "logical
browsing" capabilities for validating end user requirements.

Central to all of these activities, is a strong desire to provide
a much more flexible environment for specifying and analyzing
higher level requirements and specifications. By providing more
rapid and valid feedback at an early stage In a project, vastly
superior systems can be developed with substantially less risk.

BACKGROUND:

Historically, the broad effects and high costs of detecting and
correcting requirements errors or inconsistencies late in the life
cycle have been clearly documented. The earlier their detection
the better - thus, there Is a very natural desire to detect such

* errors as early as possible In the life cycle. Early error
detection and classification activities focused on analyzing

.r'. actual program code. Many ideas have been developed which if
applied even earlier In the lifecvcle could produce substantial
savings of time and effort.

* REFERENCES:

Wasserman, Tony, UCSF, USE Tool Set

[In particular his rapid prototyping system with its animated
execution Is quite interesting and contains many directly useful

* Ideas.]

E-24

V. *
' W" - r" .A ' " w " .- , "w " "w.Kr '. - -,~o, r - . w '~ - 7 r- .

A

Stucki, Leon, "New Directions in Automated Tools for Improving
Software Quality", Current Trends In Programming Methodology, Vol.
II, Yeh, R. T. editor, Prentice Hall, 1977.

[Contains Interesting Ideas for representing and analyzing dynamic
properties of systems. The specific examples are aimed at the
coding level - but the approaches to dynamic analysis and
potential extension to earlier phases of the life cycle are
clearly suggested.]

.4. DURATION:

Task 1: 24-36 months

Task 2 [phase I]: 18 months

4%' [phase II]: 36 months

COST:

0 Tasks 1: Improved prototyping systems
($750,000 to $1,500,00)

Task 2 [phase I]: Feasibility Study & Simple Prototype
($300,000)

[phase II]: Initial Operational Analyst Assist
($750,000 to $1,500,000)

DELIVERABLE:

PRODUCT: DATE:
(months after start)

Task 1:

Requirements for Prototyping System 4 mos.
- Preliminary Design/Test Plan 8 mos.

Detailed Design/Test Procedures 14 mos.
* Program Code/Users Manuals 20 mos.

Test Results Summary 26 mos.

Concept Paper for Future Research 36 mos.

Task 2 [Phase I]:

Requirements for Knowledge-Based System 4 mos.
Preliminary Design/Test Plan 8 mos.

Detailed Design/Test Procedures 12 mos.
Program Code/Users Manuals 16 mos.

We Test Results Summary 22 mos.
* Concept Paper for Phase 11 Research 24 mos.

Task 2 [Phase !1]:

E-25

Requilrements for KnowlIedge-Based System 4 mos.
Preliminary Design/Test Plan 8 mos.
Detailed Des ign/Test Procedures 14 mos. .
Program Code/Users Manuals 20 mos. .
Test Resultrs Summary 26 mos. "
Concept Paper for Future Research 36 mos. ..

..

'-A
-]A

° p

A° .

Ln"

CV)

0~0

<Co

0
LI..

Z LL
'Nj w

0) 0

06

<z
0)

0
CL

Lui
a..

0 L0

0 0 Co

0

*0
pcc

-- I-

IL

"p E-27

--0 - - -

0

E.1.6 Solution Architecture Synthesis

RET Research Issue. Evolutionary Track.

PROBLEM DESCRIPTION:

The synthesis activity takes system requirements as input and
produces as output a design (solution architecture); both
represented as structured text. This Involves normal aspects of
hardware/software selection/development.

VALUE IN REQUIREMENTS PROCESS:

Synthesis of designs: (1) aids performance analysis, (2) aids
examination of functionality alternatives (mission-oriented
individuals need to "try It out"), and (3) gives insight into ,0
feasibility.

SOLUTION APPROACH: There could be three kinds of assistance:

(1) Expert Advisor: providing tactical guidance on resource
selection and management.

(2) Design Crrtlquer: evaluates the architecture goodness and
design style (cohesion, complexity).

(3) The second approach is to provide a specialized design
language (VHLL) in which designs would be specified.

Issue (1) Implies use of resource models and both (1) and (2)
require a fairly formal representation of requirements.

5 YEAR OBJECTIVES:

Enhanced RPS and VHLL Prototyping tools: to aid synthesis:
* better view/reuse/syntax mechanisms.

10 YEAR OBJECTIVES:

Expert advisor.
Design critiquer.

• Specialized design language (VHLL).

RISK:
. %.4.

10-year objectives: Medium/high because of lack of insight.

E-28

0.%-. La

COST:

*Degree of effort required: 5-year objectives: Minimal. 10-year%
Wa objectives: 2-5 man years for expert advisor, 1-3 man years for

design critiquer. X

CONTI NGENCI ES:

10-year objectives: uncertain due to lack of Insight.

CONCLUSION:

The "design problem" has not yielded a solution in any CAE field.
It Is unlikely the limited RET funding can achieve basic results

Michael Konrad, Terry Welch.

E-29

W..

%°a%%$.

COTI GN IE:I

a'1-erojcie:ucrti u olc fisgt

;.4,

a'CNLS N

The desgn poblm" as nt yeldd a olulon n ay CE fild.pa?

It i unikey th liite RE] fudin canachevebasi reult

beond impl extnsins t preent ools aa

* / * , ' > ' ~. '. a .

E. 1.7 Scenario Generation Support & Scenar I- Coverage Analys.s,

RET Research Issue. Evolutionary Track.

PROBLEM DESCRIPTION:

Create a scenario that drives the prototype. The scenario may
4,r Indicate specific actions expected of the prototype for checking

results. The scenario should exercise the prototype, yet
Intelligently react to the prototype's responses (e.g. play the
role of an antagonist). Scenario creation should also be
sensitive to the type of data required by the prototype.

A coverage analysis tool Is needed to Indicate the parts of the

prototype that were brought Into play during Its e-ecution, the

requirements that are related to each part, and se. Itivity of the
prototype to scenario Input.

VALUE IN REQUIREMENTS PROCESS:

Scenarios play a key role as drivers of prototypes in experiments;
often providing the only way to evaluate a system operationally.
Tools for scenario creation, coverage, and analysis enhance the

experimental usefulness of prototypes.

SOLUTION APPROACH:

.. Scenario generation and scenario coverage require different
technological solutions. Below we examine the issues in this
order: (1) generation of adaptive scenarios and driving the

%% prototype, (2) probing the prototype for coverage, (3) given the
expected system responses under a scenario, attempt to prove that
the requirements and solution architecture satisfy the scenario
and derive the coverage, and (4) how these approaches compare to

--,.' what the Rapid Prototyping System tools (RPS) offer.

(1) GENERATION OF APAPTIVE SCENARIOS AND HOW TO DRIVE THE
PROTOTYPE

Adaptive scenarios are viewed as consisting of two kinds of very
high-level descriptions: (1) strategy: what the scenario is

* trying to accomplish against the (target) system and (2)
resources: what resources the strategy has available to carry out
its objectives. The corresponding view of prototypes Is that
there is a prototype environment consisting of (1) the prototype
code and (2) a high-level representation of resources (especially
sensors and actuators) and two maps: (2a) how system resource

E-30

%-I

changes (e.g. sensors') map to specific prototype inputs
(translation to concrete data and associating the data with
prototype code' parameters/ports) and (2b) another map of
prototype outputs to system resource changes (e.g. actuators').
Thus before an adaptive scenario can drive the prototype, the

following must be specified: (1) scenario strategy and resources,
(2) system resources and how they map to prototype Inputs/outputs,
and (3) how scenario resource actions affect system resources, and
vice versa. Then to drive the prototype, all resources are
simulated, and the following sequence is repeated:

5'. * the scenario strategy determines what changes to make in the
activities of its resources,

* these activity changes drive changes in system sensors,
* sensor changes are mapped into prototype inputs,
* the prototype executes, creating output,
* the prototype's outputs are mapped into actuator changes,
* actuator changes drive changes in scenario resources.

. On each successive iteration, the strategy examines how its
resources have been affected by system (prototype) action, and
appropriately modifies the actions of its own resources to
maintain its objectives.

Given the above, how do we support it? We require a high-level
simulation system that (1) allows high-level manipulation of
objects and (2) provides high-fidelity low-level stimuli to the

" prototype (and which translates back low-level prototype output
into appropriate object changes). Such a system can be partly
based on now-available commercial knowledge-based simulation

asystems, e.g. SimulCraft (Carnegie Group) and SimKit
(IntelliCorp). These systems would allow specification of
scenario strategy, resources, and resource interactions, and then
would simulate all resource activity. However, they do not
address item (2) above, I.e. the mappings to/from the prototype.
What is needed is a "simulation and code interface", a program
capable of interfacing system resource simulations and the
prototype, providing: (1) Input/output linkages between the two
and (2) translation of/to resource changes to/from concrete
input/output data.

Under this approach, the simulation system controls the clock,
allowing interactive examination of partial results and
interactive editing of specific variables during the execution of
the simulation.

This addresses the issue of scenario generation and how to drive
the prototype.

* (2) PROBING THE PROTOTYPE TO DETERIINE COVERAGE

For scenario coverage and sensitivity analysis, a probe is
required into the prototype that outputs not only the data that

E-31

,'.-- - , . . . - . .. -- -. . . .- . - - . - . ----....--. --.* . -. - -- -.- ' . .-

,. -.:- *.. .. *. *: N > K .: . ~
N%

4 . . .N '

I

results from the simulated stimulus but also an indication of the
requirements (and/or solution architecture) In terms of data
structure, processes and resource called upon to generate that
output.

(3) GIVEN SCENARIOS THAT CHARACTERIZE EXPECTED OUTPUT, PROVE THE
SCENARIO AND DERIVE COVERAGE

Another approach to the coverage problem Is to express the
solution architecture (or possibly even the requirements) as a set
of PROLOG-like specifications, treat the scenario as a sequence of

input/output requirements, and statically check the specifications
to see how they can be combined to produce the specifled output
from the Input. The specifications used to prove that the output
can be generated from the Input will indicate the coverage. This
would extend the work of Shapiro (Algorithmic Program Debugging).
Note that a prototype is not necessary to determining coverage
under this approach, a solution architecture Is sufficient.

(4) HOW DOES RPS COMPARE?

RPS. Here we summarize the RPS scenario generation and results
analysis capabilities and the premises on which they are based:
(1) Scenarios are initially characterized at a military mission
level by an operations expert. (2) Later, a functional/process
model of the target system Is prepared (by another analyst),
indicating system strmutus types and the sequence of functions

-., they activate. The model also :ndicates the resources for which
the functions contend. (3) The scenario Is Iteratively decomposed
until it consists of events which are all system stimuli. A
scenario library and some generation capabilities help relieve
some of the more mechanical aspects of this. (4) The scenario is
run against a performance model of the system. (5) During the
run, the performance tool collects data, computes measures of how
well (time-wise) the modeled system performed, and at the
conclusion of the run presents the results in standard statistical
fashion. (6) Other possible feedback includes: (for some
performance models) a playback-capability (graphical reenactment JS

* of each event and the transaction it triggered), a situational
display (displaying the viewable aspects of the scenario as it
unfolds), and the target system's display (what the target system
throws out on screens during transactions triggered by some

.% scenario event). (7) At no time are scenarios run against
executable code.

In conclusion, RPS scenarios are canned and the prototype (the

system performance model) generates no functional output, only:
(1) resource utilization data for the performance tool to
accumulate and (2) displays. The motivation behind the RPS
approach to scenarios Is that such performance data is invaluable.

How would the authors' recommended scenario generation approach
extend these RPS capabilities? In the authors' approach,
scenarics drive more than just performance models, they drive

E-32

IV.

% %:

• ;!executable models which generate functional output that can

~interact with (and be related to) the unfolding scenario. The
~result Is Improved realism in scenario and target system model

interactions, yielding Insight into how an antagonistic force
' might overcome the target system and of target system
, countermeasures. It Is important to note that such experiments
, will suggest revisions In more than just target system
- performance; functionality and control issues will have to be

addressed too. By combining this approach and the capabillities
a- RADC is currently developing In performance models (RPS, to a .
. small degree the Analyst) and executable models (VHLL Prototyplng

tools), the result is a capability to evaluate target system
. function, performance, and cost trade-offs.

Thus for maximum effectiveness of the adaptive scenario approach,
, the authors recommend that the adaptive scenario effort be pursued ,

, so that the resulting scenarios can work with models developed
-.. under current RADC prototyping efforts.

,- RPS will provide a capability to represent some types of=
, • requirements and solution architecture expressions in a knowledge
, base for Interrogation and analysis of Interactions. This

capability cculd be the basis for proving scenarios from system
specifications, deriving coverage.

J~l 5-YEAR OBJECTIVES: '

. Provide probes for prototypes.

'I.

SProvide a knowledge-based smulation baseline system that can
interface and run against performance and executable models TS(especially those constructed by RPS, VHLL prototyping tools, and
m octhe Analyst). Build a configuration manager that can
semiautomatically generate the simulation/prototype interface

(that relates high-level sensor/actuator changes to low-level

RACisurnl eeoigi efrac es(rPctuto aoel

prototype Input/output) based on available elsor/ctatProypn
oand user requrements on prototype level of detail and speed.

• t0-YEAR OBJECTIVES:

Develop a system to statically examine the design of the prototype
by analyzing the input/output requirements of a scenaro using the
design specifications as a proof In a theorem-proving system.
Base such a system on RPS knowledge-based requrements/model
representation capabilities. The scenario would represent

. uirnstances of the general theorem presented by the design.e

RISK:

The knowledge-based simulation approach to scenario generation and I

4; driving the prototype Involves little risk, given the commercialavailability of wnat wou d be a key component of such a system.

Both scenario coverage approaches invite rsk because tracking
what requirements were exercised by a scenario presents

E-33

Provie a nowldge-asedsimuatio baslinesystm-tht-ca

integration and technical risks. Assuming Integration risks are
controlled, the likelihood of results is 60 percent for prototype
probes and 40 percent for the static analysis (theorem proving).

COST:

Knowledge-based simulation 2 man-years
Combine simulation with code 2 man-years
Provide intelligent configuration manager 2 man-years
Prototype probe (dependent on the prototyping approaches)
Create static scenario coverage analysis system 8 man-years

CONTINGENCIES:

Part of both the scenario generation and scenario coverage
research (especially probing) depends heavily on the approaches

Staken In the prototyping research. Also dependent on the testbed
Integration effort.

* CONCLUSIONS:

This effort should be funded. Recommend that scenarios developed
under the scenario generation effort be able to work with all
prototyping tools. Recommend static scenario coverage analysis
effort be a possible follow-up to the RPS effort.

AUTHOR NAME: Stephen Sherman, Michael Konrad

.t

-E-34

0

* *. ,E-3

RET R&D Effort

ISSUE NAME: Scenario Generation Support & Scenario Coverage Analysis

TRACK: Evolutionary

OBJECTIVE:

Produce a knowledge-based simulation tool, a dynamic coverage tool
(a prototype probe), and a static coverage tool (proves scenario
from system specification).

SCOPE:

The scenario generation effort will not attempt to pioneer
knowledge-based simulation. The two coverage tools should be
pursued In two parallel R&D efforts. The static coverage tool
effort will attempt to pioneer an application of existing
technology.

TECHNICAL APPROACH:

Working closely with the prototype development efforts, provide a
knowledge-based simulation system for scenario generation. The
system must contain a representation of system/scenario resources
and the scenario strategy. The system must be extended to Include
a "simulation and code Interface" which translates between high-
level system resource changes and prototype inputs and outputs.

For static coverage analysis, the prototype design (solution
architecture) Is represented as a set of PROLOG-like predicates.
The scenario Is represented as sequence of Input values and output
responses. A theorem prover will select the predicates that
accept the specified Input and determine what helped produce the
specified output. The predicates that are required to derive the
output from the input are a measure of the coverage. The design
predicates must then be related to requirements to Indicate
requirements coverage. The RPS Knowledge-based system
"Translator" can serve as a basis for this effort. The Translator
is capable of taking system/operator resource models as input and
generating PROLOG-specifications.

* BACKGROUND:

The key tools are knowledge-based simulation, knowledge-based
analysis and theorem proving.

The concept of knowledge-based simulation was defined by Reddy and
• Fox of Carnegie-Mellon, "1KBS: An Artificial Intelligence Approach

to Flexible Simulation", and also Implemented In the ROSS
simulation system developed by the Rand Corporation, "ROSS: An
Object-Oriented Language for Constructing Simulations."

E-35

%

REFERENCES:

1. KBS: An Artificial Intelligence Approach to Flexible
Simulation, Y.V.Reddy and Mark S. Fox, CUM-RI-TR-82-1,
Robotics Institute, Carnegie-Mellon University, Pittsburgh,
Pennsylvania, 15213, 14 September 192.

2. ROSS: An Object-Orented Language to Constructing

Simulations, David McArthur, Philip Klahr, Sanjai Naraln, R-

3160-Af, December 1984.

3. Algorithmic Program Debugging, Ehud Y. Shapiro, The MIT
Press, Cambridge, Massachusetts, London, England.

4. SimulCraft is a commercial product of the Carnegie Group.

5. SimKit is a commercial product of IntelliCorp.

*DURATION:

Scenario Generation (SG) 3 Years
Static Scenario Analyzer (SSA) 4 Years

COST:

SG $.9 million
SSA $1.2 million

0. DELIVERABLE: Product Date

SG Knowledge-Based Simulation 12 months
SG Simulation and Code Interface 24 months
SG Configuration Manager-Intelligent 36 months

SSA Enhance RPS representation of designs 18 months
SSA Input/Output Representations 24 months
SSA Theorem Proving Techniques 40 months
SSA Design-Requirements Connection 48 months

,

E-36

.4.a
ll

CIO-

* N C,)W
C, ZO

-J IM
2 <-

0 -0 ~CO
< 0i. z&

Z <

C-) < 0 00c C

<i. 0 < w
0 H

0>

<U Z 0

ZL

.00 CE

F- I-ZQ0 Cl)o uiI
U Cl a.

Wx_.T L' - -WVL d, Vl-f W L"W

E.1.8 Validation of Prototype and Scenarios

RET Research Issue. Evolutionary Track.

PROBLEM DESCRIPTION:

There are two problems: (1) Make sure that the prototype and
scenario are consistent, complete and logically correct In a
static check. (2) Determine the validity of the results of
executing a scenario on the prototype In a dynamic check.

VALUE IN REQUIREMENTS PROCESS:

The credibility of the RET depends on (1) our ability to associate
requirements with resource requirements and (2) our ability to
accurately predict the resource requirements. Thus validation of
the prototype and scenario increases confidence in the
predictions.

SOLUTION APPROACH:

Provide a knowledge-based syntax and semantics checker for a
static check. It Is assumed that the prototype and scenario have
a formal language description. The knowledge base will also
contain meta-knowledge about the domain model. The checker will
examine the descriptions for the prototype and scenario for
consistency and completeness.

For a dynamic check, the prototype results must be compared with
real implementations using the same scenario. The difficulty is
in Identifying good comparison metrics and in metering both the
prototype and implemented system. Unfortunately the results are
only useful after decisions based on requirements and prototype

-accuracy have been made. In order to use Information on accuracy,
we need a library of validated correct (within limits) prototypes.

-. New prototypes need to be compared to validated prototypes through
reusability techniques. If the differences between the new
prototypes and the validated prototypes are small, confidence In
the accuracy Is improved. The key to this approach is the
creation of a library of validated prototypes or parts of
prototypes and techniques for retrieving information from that

*library.

-_ 4 5 YEAR OBJECTIVES:

'4. E-38

W0. z-p
~~~~~ %P ~ p ,PP ~ ~ ~ ~ ~ "



0

Start a library of validated prototypes and begin developing
retrieval techniques. Define a formal language for describing
prototypes and scenarios.

10 YEAR OBJECTIVES:

Continue developing the reusable prototype system Including
breaking down the prototype Into reusable, validated prototype
parts. Develop the techniques to validate a prototype and
scenario for consistency and completeness.

RISK:

The static check is higher risk due to the difficulty of
coordinating languages for scenarios and prototypes. However, If
that problem is solved, the techniques for determining consistency
and completeness being developed for expert systems could be
transferred to the domain of prototypes and scenarios.

The risk for the dynamic check is low since reusability Is a large

l e research area now and validating our prototypes must be done.

COST:

The static check and language definition Is a 6 man year effort.
The dynamic check is a continuous effort in building a library of
validated prototypes. The effort to convert a reusable
programming technique to prototypes is a 3 man year effort.

V, CONTINGENCIES:

Wait for reusability technology to be developed. Coordinate
scenario and prototype formal language descriptions.

-.- CONCLUSION:

Fund the library creation of metered and validated prototypes.
Examine a formal language approach for both the prototype and

* scenario.

AUTHOR NAME:

.N Stephen Sherman

0E-39



* i

E.1.9 Scenario Execution and Analysis of Results

A3 RET Research Issue. Evolutionary Track.

PROBLEM DESCRIPTION:

Driving a prototype against a scenario can produce considerable
data which must be collected for presentation and analysis.
Presentation can occur both during and after the experiment. An
analysis capability Is needed to evaluate the combined results of
many experiments.

VALUE IN REQUIREMENTS ENGINEERING PROCESS:
S5#

Providing tools to interpret results of prototype experiments Is
critical to evaluation of prototypes, and therefore of
requirements.

SOLUTION APPROACH:

Two sets of needs are to be addressed, those of a prototype .
experimenter and those of a mission user. The mission user
collaborates with the experimenter In establishing the scope and

Sobjectives of an experimental run(s) and In selecting the right
scenario(s) for the run(s). The prototype experimenter sets/links
up the prototype and scenario for the experimental run(s). During
scenario execution, the experimenter may need feedback on how the
prototype is doing (e.g. in utilization of resources). The
mission user must have feedback In order to assess how the

- prototype performs against the scenario. The experimenter needs
to record/capture comments elicited from the mission user during
the experiment. After the experiment, both the mission user and

.-5 experimenter might want to analyze results of the current run,
possibly in the context of p, ev'ous runs.

Thus the following capabilities should be provided:

(1) Visual presentation and analysis of: the unfolding scenario
situation, what outputs (displays, functional responses to
the scenario) the prototype generates, and what resources
the prototype utilizes. The data presentation format (e.g.

* of scenario situational displays vs. prototype displays, or
what plots against what) should be flexible.

(2) To (1) above should be added an aggregate analysis
capability. The experimenter and mission user can specify
what kinds of aggregate analyses they want on data generated

SE-40



V.

during the run, for viewing both during the run and after.
Examples of aggregate analyses Include: number of resources
left (e.g. planes), mean response time, and percentage of
hits (e.g. simulated hits on attacking planes). For
presentation of aggregate analyses results, standard
statistical presentation formats should be available.

(3) A capability for historical analyses of results. For example
to do a sensitivity analysis, one might want to do a number
of experimental runs in which a scenario Is fixed for a time
and run against different prototypes and/or vice versa.

(4) A capability to capture mission user responses during/after
the experimental runs. This might Involve no more than
careful recording of what goes on during each experimental
run. An additional approach would have the user temporarily
pause the experimental run to make "debugging changes" or
textual annotations to the unfolding events of what should
have been the prototype's response/display/performance.

0 (5) A capability to formally/informally compare expected
prototype outputs (which are part of the scenario's
definition) against scenario events. The formal comparison
approach is addressed by the static scenario analysis tool
recommended as a part of the "Scenario Generation Support &
Scenario Coverage Analysis" research Issue. For the near-
term, the comparison will be done by humans with the
assistance of data-management tools.

5-YEAR OBJECTIVES:

A central repository for the collection of all data arising from

prototype experimental runs. Database management facilities (e.g.
browsing) available to aid human analysis of data.

Specific analyses (especially analyses during experimental runs)
remain under the control of the different prototyping tools until
they can be Integrated.

10-YEAR OBJECTIVES: x

From a single experimental run, get a full range of analyses (not ".
just that provided by a single tool on a single model) and in
which all data can be cross-correlated (even during the run).

0
Knowledge-based aids for evaluation of prototype sensitivity.

U. Analyses providing results based on combined experimental
Information.

A tool that indicates which experimental runs should be performed

r* next based on an evaluation of system requirements that need
further testing or stressing.

RISK:

E-41

0........."....



Near-term objectives: low. Long-term objectives Involve moderate

to high risk.

COST:

Knowledge-based systemi for analysis 6 man-years.
of experiment results.

CONTINGENCIES:

A continuing R&D effort in prototyping. Reasonably successful
Integration of the RET, especialliy In the area of the database.
Success In the "adaptive scenario generation" approach of the
"Scenario Generation Support & Scenario Coverage Analysis" RET
research Issue.

CONCLUSION:

* Recommend funding. It is crucial to the RET. No special funding
Is needed for the near term, provided that (1) the "Database" RET
development effort provides the appropriate data management
facilities and (2) all prototypIng tools provide the appropriate
capabilities for the analysts of scenario-prototype execution
results.

AUTHOR NAME:

Stephen Sherman, Michael Konrad.

E-42.

p~.--

Nertr0betvs o.Ln-tr betvsIvlemdrt

5 .t$lg lk

0iCOT

P.KnwIeg-aesytmoraayss6ma-er.

's' ofe-ermnt42uls

* reeac issue . .5'



RET R&D Effort

ISSUE NAME: Scenario Execution and Analysis of Results

OBJECTIVE:

Provide: visual presentation and analysis, aggregate analysis,
and historical analysis of results from driving a prototype
against a scenario.

SCOPE:

Research addresses the following subjects: statistical analysis
of data, control of prototype experiments, sensitivity analysis,
and experiment design.

TECHNICAL APPROACH: e.

Near-term approach:

EPS. In the "Scenario Generation Support & Scenario Coverage
Analysis" research issue, the capabilities of RPS' performance
modeling tools is discussed. These tools work off performance
models, collect performance data, and provide relevant analyses on
the results. Thus RPS provides significant capabilities in visual
presentation and analysis (items (1) and (2) of the Solution
Approach) for performance data. 0

Ese. The RET database should serve as the collector and
repository for all information generated durlg prototype runs.
This would help, for example, compare results of running the same
scenario against both a performance model (RPS) and executable
model (VHLL PrototypIng tools) as a basis for a trade-off
analysis. The RET database should provide data management support
for human analysis. These requirements on the RET database are IN

consistent with those described under the "RET Database Management
0System" R&D effort description.

However, there Is still a need to provide specific analyses when
scenarios are run against specific target system models, e.g. the
different analyses that are performed on the different performance
models one can construct with RPS tools. For the near term, these
analyses will probably remain under control of the tool that

* helped construct the model/prototype. With testbed Integration,
the experimenter should be able to orchestrate the running of a
scenario against several models (say, of the same solution
architecture) and combine analyses.

Long-term approach:

Expand the adaptive scenario generation capability discussed in
the "Scenario Generation Support & Scenario Coverage Analysis" RET
research issue so that the simulation knowledge base can be used

E-43
0- -. .. . . .- - - - - .- . -. . . .- ., . - , . . - . . . . . .



to evaluate prototype sensitivity, e.g. between different
scenarios and different prototypes. Analyses should provide
results based on combined experimental Information.

Assuming that requirements, scenarios, and prototypes are
maintained in the same knowledge base (of which the simulation
knowledge base constitutes a part), another capability can be Ilk
identified for the very long term. From an aggregate analysis of
sensitivity/coverage analyses results, an indication will be
provided of what future experimental runs should be performed
based on an evaluation of system requirements that need further
testing or stressing.

BACKGROUND:

The authors know of no mature efforts on analyzing results from
prototype runs, though there are analogs in testing technology.
However, [1] examines the overall software prototyping approach,
investigates the experimenter-mission user relationship, and makes

* some practical suggestions of how to make the prototyping
experiment effective.

REFERENCES: -

[1] Alavi, Maryam, "An Assessment of the Prototyping Approach to
Information Systems Development", Communications of the ACM, Vol.-
27, No. 6, June 1984.

DURATION:

Knowledge-based system for analysis 3 years
of experiment results (AER)

COST (in $):

AER $ .9 millIon

DELIVERABLES: Product Date (months after start):

Enhance simulation knowledge base/RET database
for Historical analyses 16 months

Prototype sensitivity analysis tool 24 months 1%
Experiment advisor tool 36 months

0

E-44

N.. - . . . N. '* ." '. ',/ .. *.-; . ,.,, : ; , -", :...1.1 . . " "



00

Lt)

00<

00

C\J C ) L-

<HU
zJ LLw

D LU 0
a: Lu w c

2 cc 0
IL Eo'Q

HU HU<

0L U/)LL

C) a:

a)a
OD_ _ ME0 I +

C/)2

<

-Z Z:-J
LL < DC

co C/)C/)

co Z QOLL0
Z -

00
c- a.- CL .



-W. E.7.10O Estimation of cost. risk, time In system development,
Performance & Execution costs analysis

RET Research Issue. Evolutionary Track.

PROBLEM DESCRIPTION:

The uncertainty of software costs Is one of the major cost issues.

The existing cost models have several subjective parameters. The
manager dealing with these things needs tools for more reliable
estimations of cost, time etc. to aid making scheduling and
resource allocation decisions.

VALUE IN REQUIREMENT PROCESS:

* .Better estimates of cost, time and performance can help management
in choosing between alternate solutions. This also facilitates
the examination of functionality vs. cost trade-off (also known as
impact analysis or sensitivity analysis) for better project
management.

SURVEY OF CURRENT TECHNIQUES:

Cause-and-effect relationships as a basis for software cost
analysis and estimation have been investigated by various people
for the last twenty years. Most of the models use the size of the

P. project to estimate the man-months required to complete the
project, as this factor seems to correlate best with the cost.

These models are based on data from past projects. Sometimes the
data is trdnslated to charts and graphs. Another approach is to
formulate a parametric model, involving mathematical functions of
several variables, suggested by previous experimentation and
engineering judgment. Statistical techniques are used to
determine the relevance of the set of variables used in the
equation; constants of the equation (parameter estimation) are

.. based on historical data.

[Wolverton 75] has classified these efforts Into five categories -

- Top-down estimation, Bottom-up estimation, similarities and
differences estimation, ratio estimation and standard estimation.
[Boehm 81] has a slightly different classification of these

* approaches -- based on algorithmic modeling, expert judgment,
estimation by analogy, pricing to win (cost = f(what customer can
pay)) and Parkinson's law ("The project expands to consume the
budget available"). Both of them observe that two of these models

v'v dshould be used for better reliability.

I, .

E-46

0-'.
%..-...%

--- I.-.. ~ ~ .- ., -'I "P. ~ , * , ~ % % s



4 U.

Besides estimating the total cost of development of the entire
system, It is useful to have separate estimates for each phase of ,

*, the life cycle of the system. Similarly estimates for each module
and unit may be needed to optimize the schedule and cost against
deadlines penalties.

Past success stories include Wolverton's studies (of 1974) and the
RCA PRICE S system [Friedman 79]. Recent success stories include
the Walston and Felix studies (IBM) and COCOMO model [Boehm 81].

The reliability research has two distinct flavors. The first one
Is oriented towards tools for static code analysis, test case
generation, symbolic execution, correctness proofs etc. The other
Is nearer to the statistical modeling approach and leads to
reliability models, methodology for code inspection, standard test
procedures etc. The models for measurement, estimation and 4

prediction are based on a variety of estimation statistics
(Rayleigh, Bayslan, Markov, Geometric etc) for failure rates/error
distribution. Recent methods of fault handling by fault-tree,
event-tree, and Influence-tree analysis also seem to be promising
methods. The Spiral model of the software life cycle has risk .
analysis In every phase. Success stories include IBM Clean Room
and Bell Labs ESS.

The modeling approach has its own limitations. Data from old
projects may not be useful for estimating the cost, risk etc. of a
new project. Rapidly evolving technology (better programming
environments, richer set of tools, automatic programming,
workstations) have changed the productivity of programmers. The
models can not take many factors (such as implementation
constraints, management techniques, programmer qualification) into m
account. Solutions based on concurrent programs and distributed

*, systems pose problem for these models. The models should be
supplemented by other informal means of estimation of cost, time
and risk of development.

SOLLTION APPROACH (1): METRICS

A metric Is a measure of some characteristics of a software
system. In the Metrics Guided Methodology [RAM 85], metrics are
used as a too: for software development. The metrics provide
feedback to the developer, letting him know his progress. It can
also be used predict where the project is going by estimating
future size and cost, or it may Indicate that the current design
Is too complicated and unstructured. It can be used through the

software life cycle from predictions/estimations about new
products to evaluation/ maintenance of existing products. U
The Metrics Guided Methodology (MGM) helps get better estimates of

4 the cost, time and performance of the system being designed.
Requirements metrics can indicate the complexity of designs and
implementations at an early stage and suggest simplifications In
particular areas or allocation of more resources In those areas.

E-47

,....,_,.,. , ,. , -..



These can help In making intelligent compromises between target
system performance, project deadlines and allocation of manpower
to the project [RAM 85].

The use of metrics for prediction of system quality/difflculty of
design etc. can save a lot of effort and Investment in
prototyping. The metrics substitute partially for prototyping of
the system. "Feedback metrics" give Immediate feedback to the
designer and hence he does not have to wait until later design
stages to detect problems. This leads to smaller and fewer design
Iterations for the same quality. The measurement and
Interpretation of metrics can be automated by expert system
technology.

When using MGM for a specific project, metrics should be collected
based on the objectives we want to achieve in that project. This
view has been expressed by several people [BAS 84]. This requires
one to obtain the objectives (e.g. system availability,
performance) from the requirements and then develop/select metrics
for those objectives. Development of metrics Is mostly subjective
at present, though limited validation can be done by experimental
means. Using prior data and carefully documented results from
past analysis on prototypes or similar projects can also be used
to boost confidence in particular metrics chosen for the project.

BACKGROUND:

The term "metrics" have been traditionally used to denote
complexity measures. Metrics have also been used for maintenance

of large software systems. The term metrics, in general, refers
to all kinds of measures of various characteristics of software.

The particular characteristics may be useful for assessment and
estimation of the qual ity of requirements and prediction of
difficulties in later stages of software lifecycle. Other
measures include the use of techniques like utility functions and
risk analysis in making decisions during software development.

Metrics are used to evaluate software process and product. They
0 are also used as a tool for software development. They can be

used to mon:+or the stability and quality of existing systems.
There are several classifications of metrics [Baslll]. Metrics
can be divided Into product metrics (number of decisions and
interfaces) and process metrics (based on time of development,
number of errors). A second dichotomy Is quality metrics (which

9 would evaluate the product as good or bad relative to a specific
model) vs. Invariant metrics (which are independent of environment
and product except for the effects of size on cost). A third
classification would distinguish between a priori metrics and a
posterior metrics. An a priori metric is used to estimate and
evaluate the product being designed. An a posterior metric is a
measure of the existing product after the design Is complete.

It is suggested that a single metric Is not sufficient for large
software projects and hence a spectrum of metrics should be used

E-48

'S



CRAM 853. Metrics to be used should be selected based on the
objectives of a particular project. There is a need for
experimental validation of metrics, but little validation can be
expected because of the difficulty In conducting controlled
experiments In this area.

.~v.RESEARCH ISSUES:

There Is a need to define and validate a set of metrics to
estimate the cost, risk and time required In each phase of
development of a software system. A typical validation process
can be used fBoehm 78], [McCall 77]. The selection of metrics Is

N: subjective and based on experience. Then one clusters the metrics
by factor analysis. This Is followed by collection of data and
regression analysis. The metric scoring method Is an important
issue, and the method should be defined properly and then
automated.

The "size" of the project seems to a major factor in determining
the cost of the project. Current metrics used in size estimation

*(SLOC, number of modules etc) are not very satisfactory. It
relies heavily on the ability of the software engineer in-charge
to estimate the size of software product based on the
requirements, which may be imprecise or subject to change. There

', is a need for tools to estimate the size of the system from therequirements, using knowledge about past projects and current

technology. Similarly, metrics that represent project size (SLOC,
number of modules etc) are not satisfactory for many purposes.
There is a need for better metrics to represent the magnitude of
the project.

The collection of metric data from old projects can be used to
calibrate estimation models so that these models can be applied to
new projects. Similarly, design and validation of metrics that
measure the effects of programming environments, project
constraints etc. would be useful. There Is definitely a need for
developing methods for estimating the cost, time and risk involved
in developing distributed systems, concurrent programs, knowledge
based systems etc. A methodology to derive a good set of metrics
for these purposes has been discussed In [Boehm 78] and [McCall
77].

REFERENCES:

S1. Basill V. and Weiss D.M., "A Methodology for collecting
valid Software Engineering data", IEEE Transaction on

; Software Engineering, Vol. SE-IO, Nov. 1984. @

2. Boehm B.W., Software Engleerlng Economics, Prentice 
Hall

" :" 1981 . :

3. Boehm B.W., "A Spiral Model of Software Development and

2. . Boehm B.W.,SotaeEgeeigEooisPrnceHl
• ,! Enhancement".

,- E-49

?*0

%..' 5



4. Boehm B.W., Brown J.R., Lipow M., "Characteristics of
Software Quality", New York: North Holland, 1978.

5. Friedman F.R., et al, "Price Software Model - Overview",
Internal paper, Price system, RCA Corporation, Cherry Hill,
NJ, 1979.

6. Henry S., Kafura D., Harris K., "On the relationship among
three software metrics", Performance Evaluation Review, Vol.
10 Number 1, 1981 pp. 3-10.

7. McCabe T.J., Young L.F. et al, "Design Basis Paths : A
complexity Driven Design Inspection Methodology",
Proceedings of Total System Reliability Symposium,

A" Gaithersburg, MD December 1983.

8. McCall J.A., et al., "Factors In Software Quality", Tech.
rep. 77c1s62 Command and Information Systems, 1977,
Sunnyvale, CA : General Electric.

9. Ramamoorthy C.V., So S.S. "Software Requirements and
Specifications: Status and Perspectives".

10. Ramamoorthy C.V., Usuda Y., Tsai W. and Prakash A., "GENES!S
W : An Integrated Environment for supporting Development and

Evolution of Software", COMPSAC 1985.

11. Ramamoorthy C.V., Tsai W.T., Yamaura T. and Bhide A.,
"Metric Guided Methodology", COMPSAC 1985.

: 12. Walston C.E., Felix C.L., "A Method of Programming
Measurement and Estimation", IBM Systems Journal Vol. 16,
No. 1, 1977.

COST:

(1) Metric Guided Methodology
metrics for cost, time, risk;

*project size metrics.
Measurement/analysis tools 3 person yrs .45 million

(2) Add Metrics for distributed
systems, etc. 2 person yrs .3 million

0
(3) Tools for fault-handling

analysis and reliability
estimation 3 person yrs .45 million

DELIVERABLE PRODUCT:

1. Metrics for estimation of "size" of the projects.

2. Methodology for estimation of cost, time and risk of a
project. This will combine rapid prototyping and predictive

E-50

"... k~ l 
S



metrics for faster and economical estimation. New metrics
and Tools for measurement and analysis of the metrics.

3. Metrics and tools for estimation of cost, time etc. of
projects In new areas of Distributed Systems, Knowledge-

based Systems etc.

4. Tools for fault tree, Event tree and Influence tree analysis
for fault handling and estimates of reliability from system

Rstructure.

7, R ISK :

The metrics are often subjective and are defined on the basis of
experience. There should be an attempt to develop an
acceptability model to make the metrics acceptable. Experimental -

validation and peer review should be used for wider acceptability.

'5*' AUTHOR NAME: K

C.V. Ramamoorthy

E-51

.5Z



L()

LL W

0)) WW
0 0

0)) ZE1l c
0-.0F L-L~

-j -d

F: 3X

0Y 0

=0

cWc

Li U-

SZ w

oLLJ

..- 
F--

00

p.a.

4. 'p. %

~p. p.



A, E.1.11 Requirements Evaluation

RE-T Research Issue. Evolutionary Track.

PROBLEM DESCRIPTION:

Requirements are Informal statements of need. Requirements bound
the space of possible specifications. They should be internally
consistent and feasible within the state of the art. The
requirements affect the rest of the design process tremendously
and any mistake, missing information, or inconsistency may be very
difficult to correct at a later stage of design. Similarly the
quality of requirements affect the complexity of work in later
stages. Hence It is Important to create quality requirements and
there should be tools to measure the quality of the requirements.

VALUE IN REQUIREMENT PROCESS:
• r-

Requirements evaluation will help one to choose between two
alternate sets of requirements for the same system. Evaluation
can expose statements that complicate later design stages and
suggest restructuring to improve them. Measurements of ease of
modifiability will help one to make the requirements more
maintainable.

Indications of when to terminate iterative requirements
engineering activities are needed. Though it is difficult to
measure, some estimate of sensitivity to missing knowledge is
required if one Is to have confidence in the system.

SURVEY OF PAST APPROACHES:

Requirements evaluation is a relatively new area. Requirements
are often informal and evaluated by inspection. The criteria for
evaluation are still evolving. Heninger (1980) suggested that:
requirements should be modifiable, used as reference for
maintenance, reflect forethought about the life cycle of the
system, and characterize acceptable response to undesired events.
He also suggested a format for the requirement definition
document.

The first step In requirements definition is to produce a
conceptual model of the system. There exists many different kinds
of formal models whose use reduces ambiguity and vagueness in the
requirements. Objectives models help to hierarchically analyze
and describe customer goals in graphic or text form. Conceptual
data models help in analysis of major data and their

E-53 L

% ~ ~ ~ . A.%0

- J A.LArAi t n'



relationships, helping the capture and structuring of information
needs. Conceptual process models help In the analysis of those
target system processes Identified in the objectives model, and
also help analyze process-process and process-environment
interactions. Data flow and control flow models help to describe
the behavior of the system In more detail [Mlyamoto, Yeh].

The requirements are sometimes expressed in natural language or
using graphic symbols. Some work has been done to structure and
format natural language, without imposing rigorous syntax or
semantics. Formal languages are better suited to requirements
evaluation, but the use of formal languages for stating
requirements has not lead to any great success. Natural language

* expressions of requirements are difficult to check for S
completeness and consistency. It Is also difficult to partition
such expressions Into different types (e.g. functional, non-
functional requirements), unless the specifier was very careful.
They tend to be ambiguous, unclear and Inconsistent. Most
practical systems fall into the second category: structured
natural language representations. These Include PSL/PSA, SADT and
RSL [see references]. There have also been attempts to use an
Ada-like notation, but their use often leads to expression of many
low-level details, unnecessarily limiting the freedom of designers
later in development.

Requirements are often divided Into two types -- functional and
non-functional. Functional requirements Identify the system
services wanted by the user. Often these don't relate (are

p. orthogonal) to the implementation. In principle, the functional
requirements of a system should be both complete and consistent.
Completeness means that all services wanted by the users should be
specified. Consistent means that no two requirements should -,

contradict each other. The non-functional requirements Include
constraints on the Implementation: response time, time of
completion, ccmpatibility with existing software and hardware,
etc. These often change as technology changes. They often tend
to conflict with the functional requirements and induce tradeoffs
in the design. The non-functional requirements are generally
expressed in natural language.

The purpose of requirement validation Is to check for the
d consistency, completeness and feasibility of requirements. One

tool to assist the human validator would retrieve the set of all
requirements referencing a common function of the system.
Simulation is often used to show the feasibility and completeness
of the requirements. Simulation can be often very costly and time
consuming. Furthermore it is difficult to change the simulator,
as the requirements change and evolve [Vick, Davis 1977]. Rapid
prototyping has been tried. Rapid prototyping can be accomplished
thru use of high-level languages, libraries of utilities (c-shell
in Unix), and/or by reducing the error-handling and quality of the
user interface.

SOLUTION APPROACH (1): METRICS

E-54

%I4- -
', 4 ."-,- . " ,J pP". - , - o .' ' -° ',, = ' - """'.""/ "" . . °""' . ' - '- " - -. ' -' -. ' *("* . . '€,, ,' ' "-' . ' * ,

).% ".=, -.". . , . .. , ° % ", "."., . .,- . . . .-. .',.. . . . . . . . . . . . . . . .-. .... . . . . .r.. .v ,- ., . ' -" .." , ,"



i,.
I.

A metric is a measure of some characteristics of a software
system. In the Metrics Guided Methodology [Ram 85], metrics are
used as a tool for software development. Metrics provide feedback
to the developer, letting him know his progress. It can also be

N' used to predict where the project is going by estimating future
size and cost, or it may indicate that the current design is too

4 complicated and unstructured. It can be used throughout the
software life cycle from predictions/estimations about new
products to evaluation/maintenance of existing products. For
example, the Spiral model of the software life cycle uses risk
analysis at every stage. Metrics can be used in every stage to
estimate the risk factors.

The Metrics Guided Methodology (MGM) helps get better estimates of
the cost, time and performance of the system being designed.
Requirements metrics can indicate the complexity of designs and
implementations at an early stage, and suggest simplifications in
particular areas or allocation of more resources in those areas.
These can help in making Intelligent compromises between target
system performance, project deadlines, and allocation of manpower
to the project [RAM 85].

BACKGROUND:

Metrics are used to evaluate software process and product. They
are also used as a tool for software development. They can be
used to monitor the stability and quality of existing systems.
There are several classifications of metrics [Basill]. Metrics
can be divided into product metrics (number of decisions and
interfaces) and process metrics (based on time of development,
number of errors). A second dichotomy is quality metrics (which
would evaluate the product as good or bad relative to a specific
model) vs. invariant metrics (which are independent of environment

-' and product except for the effects of size on cost).

A third classification would distinguish between a priori metrics
and a posterior metrics. An a priori metric Is used to estimate

, and evaluate the product being designed. An a posterior metric is
4' a measure of the existing product after the design is complete. K

It is suggested that a single metric is not sufficient for large
software projects and hence a spectrum of metrics should be used
[RAM 85]. Metrics to be used should be selected based on the

* objectives of a particular project. There is a need for
experimental validation of metrics, but little validation can be
expected because of the difficulty in conducting controlled
experiments In this area.

RESEARCH ISSUES:

Normally a designer would like to use several representation
schemes for the design. The various representations should be
checked for consistency, i.e. whether they could represent the

E-55
•C C

0Z.-

~%



same system. Tools should be developed that provide graphic and
textual representations based on several models, and keep the
different representations consistent.

The human expert needs tools to check for the consistency of the
requirements. Tools to be developed include browsers for browsing
requirements and consIstency-checking theorem provers that analyze
the system being designed.

Prototypes are useful for requirement evaluation. We would like
to explore how the predictive approach (metrIcs) can help rapid I.IN
prototyping by reducing the detail and amount of implementation. :%

There is a need to define a set of metrics to estimate design
understandability, modifiability and complexity from the
requirements. A typical validation process can be used [Boehm
78], [McCall 77]. The selection of metrics is subjective and
based on experience. Then one clusters the metrics by factor
analysis. This Is followed by collection of data and regression
analysis (the "well cycle" involves: building models, taking
measurement, and performing analysis to validate the models.) A
formal model of requirements evaluation would make things more
concrete by providing criteria for goodness of the requirements.
Metrics can be defined on the basis of that model. The metric
scoring method is an important issue, and the method should be
defined properly and then automated.

Test cases can be generated from the requirements. This can be
achieved through transformation or via expert system guidance.

REFERENCES:

1. Basili V. and Weiss D.M., "A Methodology for collecting
valid Software Engineering data", IEEE Transaction on N

-F; Software Engineering Vol. SE-IC, Nov. 1984.

2. Beck L.L., Perkins T.E., "A Survey of Software Engineering
Practice: Tools, Methods and Results", IEEE Trans. Software
Eng. SE-9, 1983.

3. Bell et al, "An Extendable Approach to Computer-Aided
Software Requirement Engineering", IEEE Trans. Software
Eng, SE-3(1), 1977.

4. Boehm B.W., Software Engineering Economics, Prentice Hall
1981.

*-- 5. Boehm B.W., "A Spiral Model of Software Development and
Enhancement".

6 6. Foehm B.W., Brown J.R., Lipow M., "Characteristics of
Software Quality", New York: North Holland, 1978.

E-56

,'•.'' ',- -%
%.,,



7. Heninger K.L., "Specifying Software Requirement for Computer

System: New Techniques and their Applications", IEEE Trans.
Software Eng SE6(), 1980.

8. Henry S., Kafura D., Harris K., "On the relationship among
three software metrics", Performance Evaluation Review, Vol.
10 Number 1, 1981 pp3-10 .

9. McCabe T.J., Young L.F. et al, "Design Basis Paths: A
Complexity Driven Design Inspection Methodology",
Proceedings of Total System Reliability Symposium,
Gaithersburg, MD December 1983.

10. McCall J.A., et al. "Factors In Software Quality", Tech.
rep. 77cis62 Sunnyvale, CA: General Elecrlic; Command and
Information Systems, 1977.

11. Miyamoto, Yeh R.T., "A Software Requirement and Definition
Methodology for Business Data Processing", Proc. 1981 NCC ,
AFIPS Press 1981.

12. Ramamoorthy C.V., Tsai W.T., Yamaura T. and Bhide A.,
"Metric Guided Methodology", COMPSAC 1985.

13. Ramamoorthy C.V., So S.S. "Software Requirements and
Specifications: Status and Perspectives".

14. Ramamoorthy C.V., Usuda Y., Tsai W. and Prakash A.,
"GENESIS: An Integrated Environment for supporting

Develcpment and Evolution of Software", COMPSAC 1985.

15. Schoman and Ross, "Structured Analysis for Requirement

Def init ion".

16. Teichrow, Hershey "PSL/PSA: A Computer Aided Technique for
Structured Documentation and Analysis of Info Processing
Systems."

* 17. Vick C.R., Davis C.G., "The Software Development System".

Last three references from IEEE Trans. Software Engineering SE3-• ... (1), 1977.-."

SOLUTION APPROACH (2): CRITIQUER VIA KNOWLEDGE-BASE/DOMAIN KNOWLEDGE

The purpose of a critiquer Is two-fold. (1) It Is a flexible way
to measure the quality of requirements expressions

IN (understandability, clarity, consistency) and requirements I
functional ity (modifiability, evaluation and comparison of
alternatives, complexity and feasibility). (2) The critiquer can

* be used to automate the measurement, analysis, and interpretation
of other metrics. This is a fast and reliable way to deal with
the classical metrics.

E-57



%

A characterization of the kinds of errors that can be present in %
the requirements would include: errors of
inconsistency/incompatibility, errors of quality
(understandability, over-constraintment, redundancy, risks to
cost/schedule etc), and errors of incompleteness [Bell 76].

Consistency of the requirements can be checked with the assistance .

of a theorem-proving tool. By adding enough knowledge about the
domain we can make the thlorem prover a better assistant. Quality
can be measured by defining appropriate metrics on the software.
Still, It is impossible for a person to measure these properties
for a very large software system. Similarly the Interpretation of
a spectrum of metrics' values will be boring and difficult for a
person.

BACKGROUND:

Rule-based Expert Systems is an established technology now. This
technology has provided techniques for dealing with inherently
il!-defined, difficult, large and complex problems.
Traditionally, it has taken a long time for one to gain enough
experience to become an expert in these areas. Knowledge in these
areas tends to be inexact, evolving, and difficult to formalize.
The rule-based programming paradigm scores will over the
traditional programming paradigm (e.g. Lisp-based systems vs.
traditional Pascal environments).

The power of the rule-based paradigm comes from separation of
knowledge and reasoning. This makes it easier to add knowledge

-- about the domain Incrementally. It also facilitates quick
• experimentation and modification of such rule-based systems.

Rules make systems such as the critiquer adaptable and tailorable -

to any project. Different models of software development
(Waterfall, Spiral with rapid procotyping) can be used just by
changing the set of rules. Rules are also helpful in automating
certain tasks, as they become well understood. Rules can help
maintain standards for uniformity and quality [Ram 85].-'

Research in Artificial Intelligence has provided several knowledge
representation schemes and an inference engine technology to use

that knowledge. There are tools available for knowledge
acquisition (i.e. the transfer of problem-solving expertise from

an expert to the program).

* RESEARCH ISSUES:

The first solution approach recommends that a theorem prover be
used to assist decigners in checking for consistency of the

". requ;rements. Simple tools of this kind can help locate J
requirements which potentially give rise to conflicts. When added

1 to the knowledge acquisition system, the resulting system would
learn about the system being designed as well as assist In
detection of inconsistencies. It could generate test cases for
checking the completeness of the final design. The knowledge

E-58

0%
- -. . . .

..-..-.-.. , •.. - ... • % - .... , . ,. . - . '
• '"".% "-""%""".""* %. %



' acquisition capability helps by shifting different kinds ofchecking to the machine, as they become routine and better

understood.

It is widely recognized that software development Is a knowledge-
Intensive process. The seemingly Inherent shortcomings of current
approaches to software development, demonstrate our limited
understanding of the process and product Involved [Arrango 85].
There is a need to explore the nature of these processes and
develop explicit representations, so that we can reason about
them.

One should separate software engineering knowledge from domain
knowledge because their application Is relatively orthogonal. One
should also create good representation and manipulation schemes
for these.

There should be some experimental work to develop a set of rules
N. to criticize the properties of the requirements and give feedback

to the user. To manipulate the metrics one has to design suitable
* rules for measurement and interpretation of data. The rules will

need experimental validation. The development of criteria of the
goodness of requirements is also needed. These developments are
complementary to the modeling of software engineering knowledge.

REFERENCES:_B

1. Arrango G., Freeman P., "Modeling knowledge fcr software V
development" Third International Workshop on Software
Specification and Design 1985, IEEE Computer Society.

2. Bell T.E., Thayer T.A., "Software Requirements: Are they
really a Problem", Proceeding 2nd International Conference
on Software Engineering 1976 IEEE.

3. Buchanan B.G., Feigenbaum E.A., "DENDRAL and Meta-DENDRAL",
Artificial Intellilgnce 11:1 (1978) pp.5-24.

* 4. Clark K.L., McCabe F.G., "PROLOG: a language for
I'. implementing Expert Systems", Machine Intelligence.

5. C.L. Foggy, "The OPS-5 User's Manual" Technical Report,
Carnegie Mellon University 1980.

A 6. Greenspan S. "Requirement Modeling: A Knowledge
Representation Approach to Software Requirements DefInition"
CSRG, U. of Toronto, Tech. Rep. CSRG-155, March 1984.

7. Leung C.H.C., Choo Q.H. "A Knowledge-base for affective ii
Software Specification and Maintenance", Third International
Workshop on Software Specification and Design 1985, IEEE
Computer Society.

E-5 9 I
0% -A~

,,,~~ .. ' . ,, .,, , ,-,I., . * ,,p , ,,



jNT V

8. Dana S. Nau, "Expert Computer Systems", Computer Feb. 1983,
pp. 63-85.

9. Ramamoorthy C.V., Garg V. and Aggarwal R. "Environment
Modeling and Activity Management in GENESIS", 2nd conference
on software tools, techniques and development 1985.

COST:

(1) Metric Guided Methodology 3 person yrs .45 million
- and metrics, and tools

(2) Knowledge-base manipulation 3 person yrs .45 million
of design knowledge

(3) Correlate different design 1 person yrs .15 million
representations

(4) Predictive metrics and 1 person yrs .15 million
S prototyping

DELI VERABLE PRODUCT:

1. Expert System Tools for knowledge acquisition and
manipulation of knowledge about the system being designed,
for locating poTentially conflicting requirements, for
critiquing the understandability, modifiability and
feasibility of requirements.

2. Metrics for measuring the understandability, modifiability,
feasibility of requirements, and complexity of later stages
of design. Tools for measuring the metrics and interpreting
them.

, .

3. Tools to support several different representation schemes
for the same design. These would maintain version and
configuration Information and try to keep different

* representation for the same design consistent.

4. Methodology to combine predictive metrics with prototyping

for rapid prototyping.

RISK:

The tools would assist a designer. Total automation is not being
attempted since that does not seem feasible. There should be an
attempt to make the tools general yet tallorable to a particular
design environment. This added level of abstraction Increases the
risk.

AUTHOR NAME:

C.V. Ramamoorthy

E-60



LO)

C,

z
wo 0

w LLL

LU LL

CC a.

00

a) CL 0 u

m0 a: z 0()0

w 0 z

w >

-~ uJ
*z

0U

ow.

'I' o

a,.j

a- *(D

'a', E-6 1

% %L



A E.1.12 Testbed Effectiveness

RET Research Issue. Evolutionary Track.

PROBLEM DESCRIPTION:

New tools and techniques for requirements engineering will be
developed because of the early leverage they bring to requirements

problems. To ensure that the Air Force employs the best tools and
techniques, their effectiveness in producing correct requirements

must be determined. This Is a key purpose of the requirements
engineering testbed.

%" VALUE IN REQUIREMENTS PROCESS:

Demonstrating that use of a tool leads to improved requirements
* and better productivity will assist its adoption by the Air Force

community. Use of proven tc-ols will lead to better requirements.

SOLUTION APPROACH:

4:. The following things will be measured for the indicated

character ist ics:

(1) all tools: amount of user time/effort and testbed resources
,"Y. spent, number of requirements errors caught,

(2) prototyplng (building prototypes to determine how best to
adjust requirements to cut cost/risk, and Improve schedule):
estimated savings In cost, risk, schedule,

(3) the entire requirements engineering process: cumulative
effort and testbed resources, number of errors caught (not
cumulative, but before/after comparison), estimated savings in
cost, risk, schedule, and

(4) sensitivity analysis: same as 3. ,

• Measurements of the Improvement In requirements in 3 and 4 will be
proportionately allocated back to utilized tools according to user ;
effort spent. Before/after comparison of requirements will be a

* largely manual effort assisted by general documentation/versioning
tools.

5-YEAR OBJECTIVES:

E-62

0%
d%

ung-Al dt Zf Lmkkt If -I UN CM''VK I P I;LR- -ARn na& I



Testbed instrumented for effort and resource measurements.
Prototyping providing basis to cost, risk, and schedule estimates.

10-YEAR OBJECTIVES:

- Cost, risk, schedule estimation capability.
User-preference measurement of tools at end of process.

RISK:

It will be hard to evaluate the effectiveness of individual tools;
easier to evaluate the effectiveness of the entire process. 5-

r. year and 10-year objectives: significant risk In research
strategies because measurements can not reflect subtle tool
interactions with the Testbed user.

COST:
4".

5-year objectives: 2 man years. 10-year objectives: 3 man years
for adopting estimation capabilities developed under other efforts

* (see "Contingencies"), 1 man year to provide user-preference
measurement.

CONTINGENCIES:

Dependent on: (1) Testbed integration effort: instrumentation of
testbed requires tracking all testbed activities. (2)
"Requirements evaluation" effort and "Estimation of cost, risk,
time in system development; Performance and Execution costs
Analysis" effort: measuring the quality of the requirements

." before/after tool or technique use.

CONCLUSION:

Testbed effectiveness is mostly a development issue, and might be
* U incorporated in the "Testbed integration" effort. It is not clear

whether research strategies such as estimators will be effective.
Most of the relevant research falls under the two research Issues

* referenced under "Contingencies".

AUTHOR NAME:

Stephen Sherman, Michael Konrad.

E-63

,. ........ .



RET R&D Effort

ISSUE NAME: Testbed Effectiveness

OBJECTIVE:

Provide capabilities to:
(1) Measure user time/effort and testbed resources spent.
(2) Perform cost, risk, schedule estimation.
(3) Compare requirements quality before/after appl ication of
a tool or technique.

SCOPE:

. Technical areas to be addressed: Testbed Instrumentation. Cost,
risk, schedule estimation.

0 TECHNICAL APPROACH:

The technical approach is more development than research.

Objective 1: Instrument Testbed project tracking functionality to
note for each project each usage of a tool, collecting effort data
and before/after requirements versions.

Objective 2: Utilize product metrics developed under the two
research efforts referenced under "Background" for measurement of
requirements at key times In a project, for determination of tool
and technique effectiveness. Adopt as appropriate to measurement
of prototypes.

Objective 3: Ensure functionality exists to highlight differences
between two versions of requirements, one ancestral to the other.

BACKGROUND:

The issue is unique. There are no similar efforts. References on
estimation will be found in the background descriptions of two
other research issues: "Requirements evaluation" and "Estimation
of cost, risk, time in system development; Performance and
Execution costs Analysis".

DURATION:

Testbed instrumentation 24 months
Adopt estimation capabilities 36 months
User-preference measurement support 12 months.

E-64

0 " "- " x " -'W ". ". w- W' ," .- % " " " " "



COST:

Testbed Instrumentation .3 million
Adopt estimation capabilities .45 million

(assuming not covered by another effort)
User-preference measurement support .15 m llon.

DELIVERABLES:

PRODUCT: DATE (months after start):

Testbed Instrumentation:
Design (project tracking) 12 months
Code 24 months

Adopt estimation capabilities
Identification of metrics to be employed

(report) 12 months
. '. Estimating techniques on prototypes (report) 18 months

Metrics for requirements descriptions (code) 24 months
Metrics for prototype descriptions (code) 36 months

User-preference measurement support
Report on what evaluations Testbed user

should provide on project completion 12 months

5E-6

... .. .-.

S%

, .5.

•0
.•.

E•6
0,V - - " • . . *- " "w ", ' , ." w ". ' - • .. , ,'



LO)

0f)

0)0

LL
LL

N hZ 0

0 u
- U) Ow C

LU 0 Lu

L Z) C0
E:)Lu Luco a: 0 (n LL

CL0 <wD>- W

C)0 HU-
0 ~ C/

00

LUd

<) C/) I
coL <C

Z = > 0 HW
*L W<OXjL-

m LL Ow
LU ::)

co cr ----------- < Z

5 0

wZ-

LiL

E-66

%

'i* sw W



E.1.13 User Interface

RET Development Issue. Evolutionary Track.

PROBLEM DESCRIPTION:

.1t
The user interface is really the "packaging" associated with all
the other requirements technology activities. All prototype and
operational tools being developed should pay particular attention
to this Issue. All tool developers shall be required to use a
consistent approach to end-user communication.

VALUE IN REQUIREMENTS PROCESS:

Can make the difference between whether or not the new technology
is used or not. Vitally important for technology transfer and
Infusion in the mainstream of projects.

SOLUTION APPROACH:

A consistent and evolutionary approach to the developmenT of user
interfaces must be developed and supported. In order to achieve
this the following steps must be performed:

- A characterization must be developed for the different types
of users of the requirements tool set.

- A consistent user interface model must be Ceveloped for
presenting and dealing with menus, as well as textual,
graphical, and forms notations. Priority shall be placed on
following a Xerox Parc - Apple Mac - Sun - Apollo type %
interface.

- Run time support capabllities must be specified and procured
(or developed, If necessary) for supporting:

* Virtual device interfaces for all I/0 devices (e. g.
graphics/textual screens of various resolution and
color capabilities, printers and plotters of varying
capabilities, keyboard and pointer devices of varying
types).S

* Graphics support capabilities of at least GKS or
higher level.

0

E-6

E -67 7

% % % % 
%% 

~
%-



* Windowing support capabilities allowing the user to
easily manipulate multiple concurrent tasks and manage
multiple views of independent data bases/files.

* 'User-input dialog support capabilities for uniformly

communicating with the end user in a consistent and
* friendly manner.

* Clipboard support capabilities for communicating

arbitrary textual and graphical information between
various tools/applications. (This capability should
also allow and support tool developer's own
definitions of complex data (self-defining data
structures which can be passed between cooperative
tools or tool fragments) - for example one might wish
to pass a tree or symbol table of some sort between
tool s.)

N.

5 YEAR OBJECTIVES:

Clearly establish user interface models and standards to be
applied to all prototype and operational tool development "
activities.

10 YEAR OBJECTIVES:

Modify and maintain user interface models and standards in an

evolutionary manner as appropriate.

RISK:

The only real risk associated with this activity is the risk of
NOT doing it. If this is ignored or not attended to, there is a
real high probability of much of the research effort going for
naught.

COST:

. There must be an initial effort aimed at specifying a set of
candidate standards and conventions to be observed In the
development of tool Interfaces. This is probably on the order of
a 1/2 to I person year activity. This initial effort will define
a set of run time support libraries (or Packages) that should be

A• used by subsequent tool builders.

The cost of the run time support capabilities will depend upon
whether existing capabilities are available or new ones must be
created. (For example, Windowing and graphics run time support
will clearly be required - whether suitable capabilities are
available or must be built will have to be delermined.)

Subsequent costs should really be transparent to the main research
activities and Included in all tool development activities as
standard fare.

E-68
0I



% CONTINGENCIES:

Since this Is clearly a very central Issue - It must be Initiated
early so subsequent tool development activities will be
appropriately conducted.

CONCLUSION:

This Is clearly a central and pervasive Issue which affects all
tool prototyping and development. It should be Initiated very
early In the program schedule and will have an ongoing effect on
all subsequent activities.

In actuality It is really the "packaging" portion for all of the
technology being developed. As such, it will make or break the

-. a transfer of technology to the use. Regardless of how tempting It
might be to "ignore the packaging" initially, IT CAN NOT BE
IGNORED.

0 AUTHOR NAME:

Leon G. Stucki, Michael Konrad (coauthor of "RET R&D effort")

" "

! '

E-6% %

ILL,

r "a

• 1a

-_' . E-69 )-#

• _ !



,y.,

_ RET R&D Effort

V.... ISSUE NAME: User Interface

OBJECTIVE:
'.

(1) Develop standards and conventions to be observed In the
development of tool Interfaces and the use of run-time support
packages.

(2) Check compliance with standards by all tool contractors.

(3) Modify standards In an evolutionary manner.

SCOPE:

* •Broad standards are needed early. With time, selected standards
will be revised and refined. Compliance checking should be r
thorough.

.3.. TECHNICAL APPROACH:

Objective I is already well addressed In the "Solution approach"
and "Cost" sections. Objective 2 might be accomplished through a
Quality Assurance function (perhaps associated with testbed %
administration) at RADC. Objective 3 might be accomplished 

S.

through periodic reviews of standards for possible modification. %

An alternative approach to satisfying objectives 2 and 3 is to
appoint an independent authority who is responsible for both
checking compliance and maintainirg and evolving standards. This
Is the approach taken below.

BACKGROUND:

- Interactive user Interfaces stress current underlying system
facilities for input/output [1]. However, there are notable
trends as evidenced recenTy In: (1) "Macintosh Style Manual"
standards and (2) Windows tool interface and run-time support
standards.

REFERENCES:

117 M. Shaw, "An Input-Output Model for Interactive Sys4ems',
%,q 11CHI'86 Proceedings, April 1986, ACM.

CURATION:

' Tool interface standards 12 months

Modify standards and do tool check 24 months
(possible renewal every 24 months)

.. E-70

J*~~~~J JW .040. I r 0 ",

%~ "v % ^4N.



.X.K ?

COST:

Tool interface standards .15 million
(cost assumes standard run-time packages do not have to
be developed).

Modify standards and do tool check .15 million
each 24 months I

DELIVERABLES:

PROOUCT: DATE (months after start):

Tool Interface standards (3 reports:) I
User characterizations 3 months
User Interface model for

menus, text, graphics, forms 6 months
Standards 12 months

(on tool Interface and run-time support packages).

I Modify standarcs and do tool check:
Report on tool compliance with standards every new tool
Revised standards every 12 months

-- '0"

.'P. 
.

..

. .

%

E-71 I

,.,,.,.-.-,.- .-..- ; ., ,-,.-.. ...,..,,... -..- :,.; -..,.....,,. -, . - .. ,:._,,.,,,-.-.. . . ., .... ,. i .;...,,, *,,..,

r ¢ : _ , , ' . , ' . , . " 
"

." - % ' , " _ ' , ' - , . ; - " , ' . ' " - . . - ' ." - . ' . , ' . , % ' . ' .1 % % ' .. - -F. 1



LO %

0)w

-LJ

Cl)
0

C'C,
0V)

LL.
LL

l0q 00

wU <
-j LL

0 0

C) W

z ~ CY

0 CE >

-7-

0o C) Li

0u

- a.~ ~" V)



E.1.14 Database

RET Development Issue. Evolutionary Track.

Database - Shared Data

PROBLEM DESCRIPTION:

Provide data storage and data management capabilities to support
tight integration of RET tools via share data.

VALUE IN REQUIREMENTS PROCESS:

Sharing of data would occur on the following objects: data
descriptions, scenario data, requirements descriptions, procedure
descriptions, domain information, other text. The value of
sharing comes in: minimizing reentry of common data; fast

6 conveyance of outputs from one tool to Inputs of other tools;
assurance of data consistency between tools; maximizing the
availability of data for each tool; and minimizing development of

data interfacing code.

SOLUTION APPROACH:

Purchase a commercial database system which:

1) efficiently supports the data objects used in software
design activities; and

2) provides standard levels of support for distributed data
access, security, reliability, etc., for large volumes of
data. While no such DBMS now exists, as one becomes
available It should be incorporated In the RET. Also needed
will be the definition of data descriptions for standard
data objects used In communication between tools. The
assumed solution approach Is to have common data stored In a
canonical form In the database and use input/output
conversion facilities to put external data Into the format
required by each tool.

5 YEAR OBJECTIVES:

Within five years, a fully effective DBMS should be in place, and
conversion standards and/or techniques for most tools will be In

use.

10 YEAR CBJECTIVES:

Incorporate further advances In DBMS technology into the RET, as
appropriate.

E-7 3



RISK:

The chance of obtaining a good DBMS is high, but not certain.

COST:

1) Evaluate, obtain, and Install a DBMS;

2) develop common data object descriptions; and

3) Create conversion routines for RET tools In existence.

About one to three man-years.

- DEPENDENCIES

None within RET

[ • CONCLUSION:

This Is a critical element of the evolutionary RET track.

AUTHCR NAME:

Terry Welch

'e

.

0 E-74

r le

% 

,



RET Development Issue. Evolutionary Track.

Database - Data Management Facilities

PROBLEM DESCRIPTION:

Facilities are needed to manage complex design Information in the
requirements development environment: data selection, report
generation, and storage of relationships. This would apply to all
design data: requirements text, prototype specifications, data
descriptions, project management data, etc. Critical facilities
would support managing structured text as a complex of Jeslgn
objects, and support viewing of data structures from a variety of
projections (e.g. selecting a subset of a large system description
and reordering that slice of the description according to some new
criterion).

VALUE IN REQUIREMENTS PROCESS:

• -These facilities will be necessary to

1) extract particular subsets of information for specific jobs,
4. '€such as preparing reports for specialized audiences;

2) analyze prior project information for reuseability; and

3) trace decisions between various parts of the requirements
design process.

SOLLTION APPROACH:

Use a general-purpose DBMS which is efficient in the storage of
design objects, and which provides the proper facilities.

5 YEAR OBJECTIVES:

* Such a system should be in place within 5 years.

10 YEAR OBJECTIVES:

Incorporate further advances in DBMS technology into the RET, as
appropriate.

RISK:

Some kind of system can always be found. The risk is that full 

capabilities for deal ing with interrelated structures will not be
fcund.

E-75 I
0LL Si NU1



1f9 _ ' _IM W11%F WV LU WN UW .WWflu S

RN

COST:

Evaluate, select, install, customize for RET needs: 1 man-year.

DEPENDENCIES:

This DBMS should be the same one used for sharing data between RET
tools. The sharing function will more strongly stress the data
modeling capabilities of the DBMS.

CONCLUSION: ."T

-• This will be the highest pay-back, lowest cost element in the RET.
It must, however, await the development of a proper DBMS for data
sharing, so that the database will be populated with relevant
project information.

AUTHOR NAME:

* Terry Welch

%

• ..:.

IE-7

CIO- 
"Sc :&C'j-c

-'.%

v5.* ,-.

E76



RET R&D Effort

ISSUE NAME: Database - Shared Data & Data Management Facilities

OBJECTIVE:

Provide facilities which aid RET users and RET tools In
collecting, accessing and managing large volumes of complex data,
Including

1) Viewing/Reporting - the ability to extract specified suDsets
of data elements and present those subsets of data in a way
meaningful within application areas, often employing
graphical presentation means. 1"

2) Editing - Directly collecting and modifying database
information.

3) Classification - capture of information from specific
applications, and organization of that irformation to make
it meaningful for later access.

4) Export/Import - formatting data for use by external tools.

" SCOPE:

It is expected that this effort will be based on use of an
existing commercial database system which has these properties:

1) it efficiently stores design representations, meaning
complex object structures;

2) It provides conventional viewing and report generation
i facilIities; and

3) support for team development through version control and
distributed access. The proposed effort for the RET occurs
in defining effective application specific data models and
classifications, so that the general tools of DBMS are
available through the RET standard user Interface and
through procedural interfaces.

TECHNICAL APPROACH:

This work involves conventional systems analysis for a non- J
conventional application, namely understanding application data

* types and information flow, and mapping those onto the tools

provided by the DBMS. A critical aspect of the work will be the
choice of the DBMS; many possible candidates will be poorly
matched to this job.

E-77

In" , .. . " % Z I -
• 10L ., :, .,., ., . .. .,



BACKGROUND:

Many of the conceptual issues being addressed In this effort are
also being studied elsewhere:

1) the Air Force directed VHSIC effort on Engineering
Information Systems (EIS); and

2) efforts by several small companies to build object-centered
design database systems. The concepts involved in the
storage and access of design information should mature
significantly over the next couple of years.

REFERENCES:

Not yet publicly available.

DURATION:

Cnce a suitable DBMS is available, an eighteen-month effort should
suffice.

COST:

.45 million assuming a 3 man-year effort.

DELIVERABLES:

Software to be executed on the RET (Apollo system plus licenses
for incorporated DBMS and graphics software packages as
appropriate). Reports on analysis of user data and procedures
should be available In six months, a DBMS selected and installed
in twelve months, and application/tool specific interfaces
provided in eighteen months.

E-78
p % -

%,0.%. -% -""6%, . , I se , ,. .



00

o~) LLJ

LL
a)

I--

0) U)

C) (_) L

a. z.

LLIJ

E-79 U
0t

r -o



E.1.15 Evolutionary Testbed Integration

RET Development Issue. Evolutionary Track.

PROBLEM DESCRIPTION:

To maximize the benefit from the testbed, all developed or
acquired tools should be capable of working together, and thus
they need to be Integrated. Also, a key purpose of the testbed Is
to support experiments comparing different tools and techniques;
this requires monitoring tool use and controlling parameters.
Such Is made easier In an integrated testbed. ,4

VALUE IN REQUIREMENTS PROCESS:

Key capabilities of different tools can be brought to bear on the
* same requirements problems, leading to improved requirements.

SOLUTION APPROACH:

To "bring" the tools together: modify tools to utilize the common
database and common user interface developed under "Database" and

"I. "User Interface" development Issues. Instrument the testbed for
tool tracking and measurement.

To make effective use of the testbed, a "Testbed usage
-'ft. methodology" should be developed.

5-YEAR OBJECTIVES:

-'" An Integrated testbed:
tools have a common user Interface and database,
testbed activities tracked and measured, and a
testbed usage methodology.

.'ft
10-YEAR OBJECTIVES:

Incorporate new tools and techniques.
Further testbed evolution toward data-orlentatlon from tool-
oriented interface.

* RISK:

One risk is Integration made unnecessarily tight (wasted effort).
Determining when functionality is sufficiently mature for data-

0 -",-

E-80

0 .*.~~-- f\



0

directed invocation is tricky. Current RADC contractors need to
cooperatively develop their tools to aid later integration.

COST:

5-year objectives: 3.5 man years. 10-year objectives: 3 man
years.-p

CONTINGENCIES:

This development issue should subsume the testbed Instrumentation 0
activity discussed In "Testbed effectiveness". Providing a common 'I

user interface and database for the tools and standards is
addressed under "User Interface" and "Database" development
Issues. The capability for data-dlrected Invocation should be
covered by the "Database" issue.

V.' CONCLUSION: i
To make the testbed greater than the sum of individual tools, the

* Evolutionary testbed integration effort must be funded. The case
for funding long-term objectives is less clear. .- ?

AUTHOR NAM-!E:

Stephen Sherman, Michael Konrad.

I,

%

A-N

E-81

% E-V8%
p..,~~~ ~~~~ % #. ~ A P ~ ~



RET P&D Effort

ISSUE NAME: Evolutionary Testbed Integration e%

OBJECTIVE:

Develop an Integrated testbed featuring:

(1) a common database and user interface for tools,
(2) capability for evolution toward data-directed invocation,
(3) tracking and measurement of testbed activities, i
(4) a testbed usage methodology, and
(5) a way of bringing other tools in.

SCOPE:

Technical areas to be addressed: Experiment Methodologies. I

TECHNICAL APPROACH:

First determine the minimal degree of integration necessary to get
the tool interaction and tracking desired. Identify what
functionality should be autcmatically Invoked by changes in data,
and what should be under explicit user control. Identify what
aspects of tool use are to be tracked; modified tools should
automatically record details of each usage. In short, all user
and tool activities will be registered in the common database, ,%

providing a basis for project tracking and measurement.

A testbed usage methodology should guide experimental use of the
testbed facility. Each user's project (experiment) should include ..

a pre-testbed phase identifying experiment hypothesis and a post-
testbed analysis of results.

Future contractors should develop their tools to directly fit in 0
the testbed (use common database, accessed through common
interface).

A subsequent integration contract will address evolution of the
testbed: getting new functionality to work with the old, getting
more functionality automatically irvoked, and improving what is p
tracked.

BACKGROUND: .

The issue is unique. There are no known similar efforts. The
references cite the currently planned prctotyping tools that will
first be integrated.

E-82

Z. Z

44 .D PP!.4V ~~~~ ~4 ~ 4 J%
'4 :".' 4. .- *' %' .': . ""'." ' ,-".''''''.' ': "' -"9" :4 .4 -.-4' ":"- "" -: - ',".-.," ,



REFERENCES:

[] M. Stephens and K. Whitehead, "The Analyst - A Workstation for
Analysis and Design", Proc. 8th Int. Conf. Software Eng.,
IEEE Comp. Soc. Press, 1985.

[2] R. Yeh and M. Konrad, "VHLL System Prototyping Tools", a
proposal submitted to Rome Air Development Center.

[3] P. Daley, "C Rapid Prototype Investigation", Rome Air

Development Center, RADC-TR-85-216.

.1 DLURAT I ON:

Integration of current tools 24 months
Testbed usage methodology 12 months
Integration of future 'cols 36 months

COST:

Integration of current tools .A5 million
Testbed usage methodology .07 mill ion
Integration of future tcols .45 million

DELI VERABLES:

PRODUCT: DATE (months after start):
,, . .

Integration of current tools %
Report on degree of integration required 5 months :
Modified tools (design) 9 months
,"Mcdified tools (code) 12 months

Testbed usage methodology (report) 12 months

Integration of futu. e tools
Identify functionality to be incorporated (report) 18 months
Modify tools (design) 28 months

* Modify tools (code) 36 months.

;Z:

1-. N .. ,

~E-83

,.%, .i , ,% • .~• % . 5 . -. . -. -% . . . . . . . . - . -. . . . . . . . .-. .. -% . ' , . . . *./ ,, . ,



U,)

w
Ccc

* LL Iocnr

C) F LLw

I.- z
z~ 0

CC)

z

I.-

F-

0) LL 2C
0 )l

z ujD0

oC)-C/ U.)

0 z

(D 0)
a) LLL

-p..

LL

0 E-84I

/ 2*~ -,



E.2 Formal Language Track

RET Research Issue. Formal Language Track.

PROBLEM DESCRIPTION:

Requirements are currently Informal. Hence computer tools can do
no more than keep track of the requirements statements and human
claims about tracking and satisfaction (i.e., electronic note pad

and record keeping). Requirements are thus merely guiding
comments for human consumption and the requirements process Is
supported by management of people through methodology.

The goal Is the replacement of this Informal basis by a formal
treatment of requirements and automated tool support for
requirements design and tracking into a specification.

VALUE IN REQUIREMENTS PROCESS:

Extremely high. Value arises from earlier detection of
inconsistent or unsatisfiable requirements, better trade-off
analysis, and earlier detection of requirements unsatisfied in a
specification, particularly ones only partially (or sometimes)
satisfied.

SOLUT I ON APPROACH:

Expand existing formal specification language to include formal
requirements statements. Share a common domain model and define
requirements as predicates against behavior of specification.
Formally execute specification to generate behavior against which
to test requirements predicates. Include goals as requirements
which are only "desired." Provide support for multiple levels of
abstraction in stating requirements and specifications and mapping
between them. Provide support for evolving requirements statement
on basis of feedback from evaluation tools.

5 YEAR OBJECTIVES:5-,

Common formal language for requirements, specifications, and goals
which share the same domain and behavior models and methodologies
for dealing with these formalisms. Provide tool which determines
whether requirements are satisfied by a specification with respect
to a particular scenario.

Sclasse0 YEos (BJECTIVES:n

Expand require-ents satisfaction determination tool to handle- classes of scenarios (via symbolic execution) and automatic

determination of scenarios. Support multiple levels of
abstraction for requirements and specifications and the mappings I

E-85-
U 0r1



I -

between them. Manage the human and computing resources engaged in
the evolution of requirements.

RISK:

Relatively low for short term objectives to product integrated
formal requirements and specification language and to formally
execute a specification against a scenario to generate behavior,
and to use that behavior to determine whether requirements are
satisfled.

Relatively high over the long term to build reasoning and analysis
tools which can handle practical size requirements statements and
provide deep and comprehensive feedback to aid Iterative design of
requirements. ]

COST: 8.7 million

CEPENDENCIES:

* Requires more highly trained Requirements Engineer and Mission
User. Entire approach is dependent upon integration of

d requirements into Formal Specification language, but this is
relatively low risk. Incremental requirements ccmponent assumes
successful prior completion of corresponding incremental
specification effort (separately funded).

CONCLUSION:

Formal language approach to requirements is highly recommended as
complement to evolutionary track. It is higher risk and higher
payoff and that payoff occurs later than in evolutionary track.
But it lays the foundation for earlier and more reliable detection
of requirements problems and their use as a real design envelope.

AUTHOR NAME:

Robert Balzer

aE-86

• I



U,)

LL:J
a, Li

CV cC
086

cc~

0

CL 0
z I <

0 z 0
6 m0

~cr~ 0
CD U-

U- C
"a' 0ui

Lu0

SO)

00

*c

E-8Jill1124 111 1 1111) 11I



E.2.1 Requirements Integrated into Spec Langu

RET R&D Effort. Formal Language Track

OBJECTIVE:

Integrate requirements Into formal specification language, sharing
common domain and behavior models. Resultant language must be
executable.

SCOPE:

Technical areas to be addressed: Formal semantics, domain
models, database schema, executable specifications, formal

specification languages. N

Technical areas not addressed: Advances in formal semantic
0- theory, new formal languages, symbclic evaluation.

TECHNICAL APPROACH:

Survey existing executable specification languages. Choose one
with an explicit domain model and formal model of behavior.
Define requirements as predicates against behavfor and integrate
into language.

RELEVANT WORK:

OBJ (SRI), Paisley (AT&T), Gist (ISI), Clear (Edinburgh

University).

DURATION: 24 months

COST: I million

-PI DELIVERABLES:

Formal requirements and spec language,
shared domain model 12 months

Formal requirements and spec language,
0 shared behavior model 24 months

..

E-88

0V



L' 1
0

E.2.2 Formal Interpretation of RequIiements Against Behavior

RET R&D Effort. Formal Language Track

OBJECTIVE:

Execute specification against scenario to generate its behavior.
Determine whether requirements were satisfied by this behavior.

SCOPE:

Technical areas to be addressed: Symbolic evaluation, formal
semantics, temporal logic, executable specification.

' Technical areas not addressed: Advances in formal semantic
theory or logic.

TECHNICAL APPROACH:

Use symbolic evaluator to generate the temporal behavior of an
executable specification on a scenario. Extend symbolic evaluator
with additional phase that determines whether requirements are
satisfied by this behavior. If not, Inform user which
requirements were violated by what portions of the behavior and
how this resulted from the specification.

RELEVANT WORK:

Gist symbolic evaluator and behavior explainer (ISI), ELI symbolic
evaluator (Harvard), Paisley evaluator (AT&T), scenario

.*specification.

DURATION: 24 months

COST: 1 million

DELI VERABLES:

Symbolic evaluator for requirements

and spec language 12 months

* Requirements predicate checker 21 months

Requirements violation checker 24 months

E-89

v% %



E.2.3 Methodology for Formal Requirements Synthesis

RFT R&D Effort. Formal Language Track

OBJECT IVE:

Provide guidance for Mission Users and Requirements Engineers In
creating formal requirements and using facilities of RET formal
track.

SCOPE:

Technical areas to be addressed: None.

TECHNICAL APPROACH:

0 Extend structured specification methodologies to requirements and
their formal expression. Define methodology for using
requirements checker and modifying requirements statement. Define
methodology for stating goals and determining which should become
requirements. Design experiments to test and validate proposed
methodologies.

RELEVANT WORK:

Structured Design, CORE, metrics.

DURATION: 36 months

COST: I million

DELIVERABLES:

Structured requirements synthesis
methodology 12 months

Guidel ines for use of requirements
checker 24 months

Methodology for using goals 30 months

* Requirements methodology manual 36 months

'4.I.E-90

01
ERN.-.L'.. a~ a



*I

E.2.4 Goal Coverage Analysis

RET R&D Effort. Formal Language Track

OBJECTIVE:

Provide feedback to user about degree of coverage of goal
satisfaction and degree to which satisfaction is obtained.
Provide basis for trade-off analysis.

SCOPE:

Technical areas to be addressed: Symbolic evaluation, test
coverage analysis, decision support systems.

TECHN ICAL APPROACH:

Extend requirements checker to keep track of cases for which goals
were not satisfied. Characterize degree of coverage from model of
search space. Define measures of satisfiability and algebra for
combining values.

RELEVANT WORK:

DURATION: 24 months

COST: I million

DELI VERABLES:

Tracker of unsatisfied goals 6 months

!Model of search space and estimator of
degree of goal coverage 12 months

K, Measures of satisfiability and algebra
for their combination 24 months

E-9 1

- %

Z%** K
K."K



E.2.5 Multiple Levels of Abstraction

"'V RET R&D Effort. Formal Language Track

OBJECT I VE:

Formalize tracking of requirements through multiple levels of
abstraction.

Requirements are predicate against behavior. Hence, refinement
results in one or more requirements which ogether should Imply
the original requirement. The methodology for formal requirements
synthesis will provide guidance for when and how such refinements
occur. This effort will ensure the validity of each such
refinement, keep track of which higher level requirement(s) are
(partially) satisfied by a lower level one, and identify what
extra assumptions/commitments resulted from the refinement.

~.4.

Technical areas to be addressed: Formal models, abstract cata N
types.

Technical areas not addressed: Automatic classification,
knowledge representation theory.

.' TECHNICAL APPROACH:

Provide formal basis for defining abstract models and for relating
activity in one to the corresponding activity In the other.
Provide tool which verifies that a requirement in one model is
ensured by a set of requirements in another model. Provide a tool
which finds that set, If it exists (this is a formal requirements '
tracker).

S RELEVANT WORK:

Automatic classification, knowledge representation, theorem
proving.

DURATION: 36 months0|

COST: 1.5 million

DELIVERABLES:

*.- Abstract Model Definition facility 12 months

Verifier that a requirement in one
model is covered by a set of refinements
in another model 24 months

E-92

0L



I dentifIcation of extra assumptions/commitments
resulting from a refinement 30 months

Formal Requirements Tracker 36 months

E-93.

iI

:',I0
V

i E-9I



E.2.6 Scenario Generation and Coverage

RET R&D Effort. Formal Language Track

OBJECTIVE:

Scenarios are crucial to testing requirements and the systems that
(purport to) implement them. Whereas requirements and
specifications are general statements, which are, respectively,
predicates against behavior and generators of that behavior,
scenarios define behavior for specific cases. As such, they can
be used as test cases to verify that both requirements and
specifications include the desired specific behavior.

However, to be used in this manner, a scenario must be both
complete and detailed. It must not only define the desired

* behavior, but also all the inputs and controls needed to ensure
P. that this behavior will result. Furthermore, some comparison

mechanism must exist to determine whether the behavior generated
by the specification, which is more complete and detailed than the
subset specified in the scenario, is a valid instantiation of that

V. desired behavior.

These requirements currently make scenario generation a demanding,
labor intensive, error-prone, and time-consuming task. However,
with formal requirements and specifications, much of this effort,' can be automrated. '

The goal of this effort is to generate a complete scenario from a

mission user's outline of desired behavior.

SCOPE:

Technical areas to be addressed: Test case generation, symbolic
• evaluation.

TECHNICAL APPROACH:

Reverse the flow of reasoning in symbolic evaluation so that, for
a given specification, partially specified behavior (i.e.,
symbolic output) can be used to characterize the inputs necessary

Sto generate that behavior. Such a "backward evaluation" would
build up parameterized expressions and constraints which defined
the sets of Inputs that would generate the behavior. Consistently
instantiating these expressions (without violating the

constrain-t,) would provide a specific scenario for the desired
behavior.

Combinatorial explosion In the search space will necevslate the
use of heuristics to control both the "backward evaluation" and

7,) the parameter instantiation processes. These heuristics should

E-94



.yrr ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 7 VIIJ a, narF.na nr na p.'r naW na r~a n SWw FMl vv Wn M.n M.- 'a*'K 'a a a' pin Pa- a,- 'rr fliW. r ,rU

'II

combine knowledge of generating test cases and of normal
situations and behaviors in the target domain.

Capabilities produced for mapping and matching multiple levels of
abstraction would be used to determine whether a specific behavior
generated from a specification or prototype satisfied the mission -
user's statement of desired behavior.

RELEVANT WORK:.P

Symbolic Evaluation, Test case generation, multiple levels of
abstraction, heuristic search, diagnostic systems.

DURATION: 24 months S

COST: 1 million

DELIVERABLES:

Scenarios generation from Mission
User's behavior spec 18 months

Determination of satisfaction of
actual behavior against Mission
User's behavior spec 24 months

E-

E-9 5'i

I ~ III II I -11 11 j I II;

MM'0I I 

a



1k.

i• I

E.2.7 Incremental Requirements Language .

RET R&D Effort. Formal Language Track

OBJECTIVE:

Provide language-based support for evolving requirements rather
than creating them from scratch all at once.

.equirements evolve as Mission Users, Acquisition Engineers, and
Developers think more carefully about the system to be built and
get feedback, insight, and experience, from analysis tools and/or

- prototypes. Yet, formal languages capture none of this time
history. Each stage Is a stand-alone complete description related
to the others only by a version number. Each stage must be
produced by low-level text edits of the previous stage which

* effect the intended modification but keep that modification

This effort directly supports evolution by providing explicit
language constructs for common modifications. These constructs
increase comprehension for both humans and tools by focusing
attention on the changes and by providing an incremental, staged

,~.~basis for understanding.

SCOPE:

Technical areas to be addressed: Formal languages,
transformations.

TECHNICAL APPROACH:

Build upon prior work in incremental specification languages for
base of modification constructs, human reading tools, and tool
focusing capabilities. Add special support for refining
predicates (requirements), strengthening and weakening them, and
revising them.

RELEVANT WORK:

Monotonic logics and languages, cognitive models, transformation,

multI-level models.

5 DURATION: 36 months

COST: 1.5 million

DELIVERABLES:

Incremental requirements refinement

S*" constructs 6 months

E-96
0i



Incremental requirements strengthening12mnh
and weakening constructs12mnh

Incremental requirements revision
constructs 18 months

Integrate incremental language constructs
with multi-level requ~rements tracking36mnh

a.

E-9



E.2.8 Managing Resources

RET R&D Effort. Formal Language Track

OBJECTIVE:

Manage the human and computing resources needed to create an
Initial set of requirements, analyze them, gather feedback from
prototypes (specifications), determine whether they are satisfied
by the prototype's behavior, Iteratively revise and refine them,

*i and track them throughout this process.

SCOPE:

Technical areas to be addressed: Task representation, agenda
management.

TECHNICAL APPROACH:

Provide formal support for activities informally defined by
previous methodology guidelines effort. Formally represent the
tasks required. Identify their preconditions, resources, and
results. Construct manager which understands these dependencies
and guides users in task selection.

. RELEVANT WORK:

KBSA Activity Coordinator, CAD

DURATION: 24 months

COST: .75 million

S." DELIVERABLES:

* Formal representation of RET tasks 6 months
Task manager for single user 12 months

Task and tool manager for single user 18 months

Task and tool coordinator for multi-user
* requirements effort 24 months

.5

E-98

011,
Jill 

..1,,



0

APPENDIX F: PHILOSOPHICAL CONSIDERATIONS

F.1 Assessing Completeness In Reurements

Determining whether requirements are complete in the general case
is Impossible. However by carefully limiting oneself to a finite
number of well-defined properties, and defining completeness as
satisfaction of these properties, it is possible to determine
whether the requirements are complete. An example set of
properties (from [1]) is:

* No TBDs,

* No nonexistent references,
* No missing specification items,
* No missing functions,
* No missing products.

The problem In the general case Is that we don't know all the
properties because we lack good meta-models covering all that
which we are trying to specify.

References:

[1] B. Boehm, "Verifying and Validating Software Requirenents and
Design Specifications", IEEE Software, January 1984.

F.2 Unexcected Bounding of the Solution

The mechanisms used to express requirements affect the choice of a
solution. There Is no resolution to this problem.

Simply stating a problem necessarily bounds the corresponding
solution space. Formal expression exacerbates the bounding (there
is less ambiguity). Even the formalization of an application

lo domain which is subsequently referenced in several requirements
imposes bounds on the corresponding solution spaces.

Where does the bounding come from? Formal descriptions are
necessarily a mixture of organizational/structural expressions

(designs) and expressions of bounds. While the describer's goal
is the expression of the latter (the bounds), their expression
must be made In the context of the former (the designs). The
problem is that these designs themselves produce bounds, and these
are In addition to those bounds the describer may have intended to
explicitly state.

0 The conclusion of this is that requirements and solution
architectures contain similar kinds of descriptions (designs and
bounds) and so there should be a sharing of the syntax and
semantics used in expressing them.

Testbed users need to be made aware that the form of expression

*_ they employ may bound the solution space in undesirable ways.
5.
4.
.r.

OF-

IF-



APPENDIX G: REFERENCES

Alavl, M., "An Assessment of the Prototyping Approach to ACM
Information Systems Development", Communications of the ACM,
Vol. 27, No. 6, June 1984.

Alford, M., "A Requirements Engineering Methodology for Real Time
Processing Requirements", IEEE T.S.E., January 1977.

* Arrango G., Freeman P., "Modeling knowledge for software
development" Third International Workshop on Software
Specification and Design 1985, IEEE Computer Society. I

Barstow, D., "Domain-Specific Automatic Programming", IEEE T.S.E.,

November 1985.

Bartlett A.J., Cherrie 8.H., Lehman M.M., MacLean R.I., and Potts
,. C., "The Role of Executable Metric Models in the Programming

Process", Final Report, ARPA Order No. B-2-3288.

Basili V. and Weiss D.M., "A Methodology for collecting valid
Software Engineering data", IEEE T.S.E., Vol. SE-IO,

November 1984.

*Beck L.L., Perkins T.E., "A Survey of Software Engineering
Practice: Tools, Methods and Results", IEEE T.S.E. SE-9,
September 1983.

Bell et al, "An Extendable Approach to Computer-Aided Software
Requirement Engineering", IEEE T.S.E., SE-3(I), January

.p. 1977.

Bell T.E., Thayer T.A., "Software Requirements: Are they really a
Problem", Proceeding 2nd International Conference on
Software Engineering, 1976 IEEE.

Boehm B.W., Software Engineering Economics, Prentice Hall 1981.

Boehm B.W., "A Spiral Model of Software Development and
Enhancement," 1985, TRW tech. report 21-371-85, TRW, Inc., 1

0 Space Park, Redondo Beach, CA 90278.

Boehm B.W., Brown J.R., Lipow M., "Characteristics of Software
* Quality", New York: North Holland, 1978.

Buchanan B.G., Feigenbaum E.A., "DENDRAL and Meta-DENDRAL",
/ 'Artificial Intelligence 11:1 (1978) pp. 5-2 4 .

- Clark K.L., McCabe F.G., "PROLOG: a language for implementing
Expert Systems", Machine Intelligence.

Daley, P., "C3 1 Rapid Prototype Investigation", Rome Air
Development Center, RADC-TR-85-216.

G-

0N.EU



.J

Davis, A., "The Design of a Family of ApplIcation-Oriented
Requirements Languages", IEEE Computer, May 1982.

Ehrig H., Mahr B., Fundamentals of Algebraic Specification 1:
Equations and Initial Semantics, EATCS Monographs on
Theoretical Computer Science, Vol. 6, Springer-Verlag, New
York, 1985.

Finkelstein, A. and Potts, C., "Structured Common Sense: The
Elicitation and Formalization of System Requirements",
Research Report #86/7, Imperial College, 180 Queens Gate,
London, SW7 21Z.

Foggy, C., "The OPS-5 User's Manual" Technical Report, Carnegie
Mellon University 1980.

Friedman F.R., et al, "Price Software Model - Overview", Internal
paper, Price system, RCA Corporation, Cherry Hill, NJ, 1979.

Greenspan S. "Requirement Modeling: A Knowledge Representation
Approach to Software Requirements Definition" CSRG, U. of
Toronto, Tech. Rep. CSRG-155, March 1984.

Greenspan, S. J., Mylopoulos, J., and Borgida, A., "Capturing More
World Knowledge in the Requirements Specification", Proc.
6th Int. Conf. Software Eng.

Guttag J., Horning J., "Formal Specification as a Design Tool",
Proc. ACM symp. Princ. of Programming Languages, January
1980, pp. 251-261.

Heninger K.L., "Specifying Software Requirement for Computer
System: New Techniques and their Applications", IEEE T.S.E.,

'- SE-6(1), January 1980.

Henry S., Kafura D., Harris K., "On the relationship among three I
software metrics", Performance Evaluation Review, Vol. 10
Number 1, 1981 pp. 3-10.

Konrad M., Welch T., "VHLL System Prototyping Tool - Users
Manual", Int'l Software Systems, Inc., Austin, TX 78759,~(1987).

Leung C.H.C., Choo Q.H. "A Knowledge-base for effective Software

* Specification and Maintenance", Third International Workshop
on Software Specification and Design 1985, IEEE Computer
Society.

McArthur, D., Klahr, P., Narain, S., "ROSS: An Object-Oriented Ur
Language to Constructing Simulations", R-3160-Af, December
1984.

G-2



0

McCabe T.J., Young L.F. et al, "Design Basis Paths: A Complexity
Driven Design Inspection Methodology", Proceedings of Total
System Reliability Symposium, Gaithersburg, MD, December
1983.

McCall J.A., et al. "Factors in Software Quality", Tech. rep.
77cis62 Sunnyvale, CA: General Electric; Command and
Information Systems, 1977.

Miyamoto, Yeh R.T., "A Software Requirement and Definition
Methodology for Business Data Processing", Proc. 1981 NCC
AFIPS Press 1981.

Nau, D., "Expert Computer Systems", Computer Feb. 1983, pp. 63-85.

Neighbors, J., "The Draco approach to constructing software from
reusable components", IEEE T.S.E., vol SE-IO, September
1984.

* Ramamoorthy C.V., Garg V. and Aggarwal R. "Environment Vodeling
and Activity Management In GENESIS", 2nd conference on
software tools, techniques and development 1985.

"amamcorthy C.V., So S.S. "Software Requirements and
Specifications: Status and Perspectives", draft report from
University of California at Berkeley.

Ramamoorthy C.V., Tsai W.T., Yamaura T. and Bhide A., "Metric
Guided Methodology", COMPSAC 1985.

Ramamoorthy C.V., Usuda Y., Tsai W. and Prakash A., "GENESIS: An
Integrated Environment for supporting Development and
Evolution of Software", COMPSAC 1985.

Reddy, Y., Fox, M., "KBS: An Artificial Intelligence Approach to
• .Flexible Simulation", CUM-RI-TR-82-1, Robotics Institute,

Carnegie-MelIon University, Pittsburgh, Pennsylvania, 15213,
14 September 192.

Schoman and Ross, "Structured Analysis for Requirement
Definition", IEEE T.S.E., SE-3(1), January 1977.

Shapiro, E., Algorithmic Program Debugging, The MIT Press,
Cambridge, Massachusetts, London, England.

Shaw, M., "An Input-Output Model for Interactive Systems", CHI'86
A Proceedings, April 1986, ACM.

SirKit is a commercial product of IntelliCorp.

*Simu:Craft is a commercial product of the Carnegie Group.

G-3

%0

% LIU U,



Stachowitz, Bar-Hillel, Winograd, Simmons, "Requirements for
Mechanical Translation - Problems, Solutions, Prospects" in
Feasibility Study on Fully Automatic High Quality
Translation, Austin, Texas, Linguistics Research Center, The %
University of Texas at Austin, RADC-TR-71-295, 1971.

Stephens, M. and Whitehead, K., "The Analyst - A Workstation for
Analysis and Design", Proc. 8th Int. Conf. Software Eng.,
IEEE Comp. Soc. Press, 1985.

Stone, A., Hartschuh, D., and Castor, B., "SREM Evaluation", Rome
Air Development Center, RADC-TR-83-314.

Stucki, L., "New Directions in Automated Tools for Improving
Software Quality", Current Trends in Prcgrammlng
Methodology, Vol. II, Yeh, R. T. editor, Prentice Hall, .
1977. ,.-

Sundfor, S., "Draco Domain Analysis for a Real Time Application:
The Analysis", Tech Report RTP 015, Irvine, CA: University
of California, 1983a.

Sundfor, S., "Draco Domain Analysis for a Real Time Application:
Discussion of the Results", Tech Report RTP 016, Irvine, CA:
University of California, 1983b.

Teichrow, Hershey "PSL/PSA: A Computer Aided Technique for
Structured Documentation and Analysis of Info Processing
Systems.", IEEE T.S.E., SE-3(1), January 1977.

Vick C.R., Davis C.G., "The Software Development System",IEEE
T.S.E., SE-3(1), January 1977.

Yeh, R. and Konrad, M., "VHLL System Prototyping Tools", a
proposal submitted to Rome Air Development Center. See

Konrad M., Welch T. reference.

Walston C.E., Felix C.L., "A Method of Programming Measurement and
Estimation", IBM Systems Journal Vol. 16, No. 1, 1977.

Wasserman, A.I., "Extending State Transition Diagrams for the
Specification of Human-Computer Interaction", IEEE T.S.E.,
August 1985.

0L

G-4

r,. - ' " " W" °"W ' ;. - . . . ' - ,.i .. 'i*,' , , ) !Lt,, . .. " " ., '4- "



-b (b

M IS'SION

* Romn Air Development Center
- RAOC ptan6 and eecutes 'Le~eLVch, deveZopment, -test-

and seZecCed acqui&si&tion ptogt'amz iLn .4appott o6
Command, ContoZ, Communications and IntecZZgence
(C31) actvities. TechnicaL and engi-nee'rLng
6uppot-t within ateaz o6~ competence i& ptov-Lded to
ESV P'ro9.am O6Zc e. (PC-) and othet ESV etements
toc petotm e66ecti-ve acqui.siLtion o6 C31 sysems.
The a.tea.4 o6 technicat competence inc&Lde
commu~nicatiLons, command and conttoZ, battte

*management, in6ot'mation pitoce464Lng, 4~uveitZance

l

sn~o't6~, inteZ-&gence da-ta co~Zection and handtinq,
6 cZ.Ld stZate s~ciences~, eZecttomagntc4, and
prtopagaton, and eZt.cttonic, mainta.ZnabLUtt,
and con'patibZity.

'* 1

'

-...-.. X-."-... .. MISSION -i

.. --. *..* ... ,
" ....................... exec-tes...search,...velopment,..est......

................... iitin prgram. in.. ppot.of...
"' omand CntrlComuncaton an Itelign ' .. **


